Monday, January 21, 2019

5.2 Tekanan Gas

Gas memberikan tekanan pada permukaan apa pun yang bersentuhan dengannya, karena molekul gas terus bergerak. Manusia telah beradaptasi dengan baik secara fisiologis terhadap tekanan udara di sekitarnya sehingga biasanya tidak menyadarinya, mungkin seperti halnya ikan yang tidak menyadari akan tekanan air terhadap dirinya.

Sangat mudah untuk menunjukkan tekanan atmosfer. Salah satu contoh sehari-hari adalah kemampuan untuk minum cairan melalui sedotan. Mengisap udara keluar dari sedotan mengurangi tekanan di dalam sedotan. Tekanan atmosfer yang lebih besar pada cairan mendorongnya ke dalam sedotan untuk menggantikan udara yang telah tersedot keluar.


Satuan Tekanan Menurut SI

Tekanan merupakan salah satu sifat gas yang paling mudah diukur. Untuk memahami bagaimana mengukur tekanan gas, akan sangat membantu untuk mengetahui bagaimana satuan pengukuran diturunkan. Dimulai dengan kecepatan dan percepatan.

Kecepatan didefinisikan sebagai jarak perpindahan per satuan waktu; yaitu adalah,

Satuan SI untuk kecepatan adalah m/s, tetapi juga akan digunakan cm/s.


Percepatan adalah perubahan kecepatan per satuan waktu, atau

Percepatan diukur dalam m/s² (atau dapat juga digunakan cm/s²).


Hukum kedua gerak, yang dirumuskan oleh Sir Isaac Newton pada akhir abad ke-17, mendefinisikan istilah lain, dari mana satuan-satuan tekanan diturunkan, yaitu, gaya. Menurut hukum ini,

gaya = massa x percepatan

Dalam konteks ini, satuan gaya SI adalah newton (N), di mana

1 N = 1 kg m/s²

Akhirnya, dapat didefinisikan tekanan sebagai gaya yang diterapkan per satuan luas:
Satuan SI tekanan adalah pascal (Pa), didefinisikan sebagai satu newton per meter persegi:
1 Pa = 1 N/m²

Tekanan atmosfer
Atom-atom dan molekul-molekul gas di atmosfer, seperti halnya semua materi lainnya, patuh pada hukum gaya gravitasi bumi. Akibatnya, atmosfer jauh lebih rapat di dekat permukaan bumi daripada di ketinggian tertentu. (Udara di luar kabin pesawat yang bertekanan pada 9 km terlalu tipis untuk bernapas.) Faktanya, kerapatan udara berkurang sangat cepat dengan meningkatnya jarak dari bumi. Pengukuran menunjukkan bahwa sekitar 50 persen atmosfer terletak dalam 6,4 km dari permukaan bumi, 90 persen dalam 16 km, dan 99 persen dalam 32 km. Tidak mengherankan, semakin rapat udaranya, semakin besar tekanan yang diberikannya. Gaya yang dialami oleh setiap wilayah mana pun yang terpapar atmosfer bumi sama dengan berat kolom udara yang terpapar di atasnya. Tekanan atmosfer adalah tekanan yang diberikan oleh atmosfer bumi (Gambar 5.2). Nilai aktual tekanan atmosfer tergantung pada lokasi, suhu, dan kondisi cuaca.
Gambar 5.2. Kolom udara yang memanjang dari permukaan laut ke atmosfer bagian atas.

Apakah tekanan atmosfer hanya bertindak ke bawah, seperti yang mungkin dapat disimpulkan dari definisi di atas? Bayangkan apa yang akan terjadi kemudian, jika selembar kertas sampul berukuran A4 dipegang (dengan kedua tangan) di atas kepala dan meletakannya. Mungkin diharapkan kertas menekuk karena tekanan udara yang bekerja padanya, tetapi ini tidak terjadi. Alasannya adalah bahwa udara, seperti halnya air, adalah fluida. Tekanan yang diberikan pada suatu benda dalam fluida datang dari segala arah — ke bawah dan ke atas, serta dari kiri dan dari kanan. Pada tingkat molekul, tekanan udara dihasilkan dari tabrakan antara molekul udara dan permukaan apa pun yang bersentuhan dengannya. Besarnya tekanan tergantung pada seberapa sering dan seberapa kuat molekul bertabrakan pada permukaan. Ternyata ada banyak molekul yang mengenai kertas dari atas seperti halnya ada di bawahnya, sehingga kertas tetap menempel dan tidak menekuk.

Bagaimana tekanan atmosfer diukur? Barometer mungkin merupakan instrumen yang paling dikenal untuk mengukur tekanan atmosfer. Barometer sederhana terdiri dari tabung kaca panjang, ditutup di satu ujung dan diisi dengan merkuri. Jika tabung dengan hati-hati dibalik di dalam piringan merkuri sehingga tidak ada udara yang masuk ke tabung, beberapa merkuri akan mengalir keluar dari tabung ke dalam piringan, menciptakan ruang hampa udara di bagian atas (Gambar 5.3). Berat merkuri yang tersisa dalam tabung didorong oleh tekanan atmosfer yang bekerja pada permukaan merkuri dalam piringan. Tekanan atmosfer standar (1 atm) sama dengan tekanan yang menopang kolom merkuri tepatnya setinggi 760 mm (atau 76 cm) pada 0°C di permukaan laut. Dengan kata lain, atmosfer standar sama dengan tekanan 760 mmHg, di mana mmHg mewakili tekanan yang diberikan oleh kolom merkuri setinggi 1 mm. Satuan mmHg juga disebut torr, setelah ilmuwan Italia Evangelista Torricelli, menemukan barometer. Demikian sehingga,

1 torr = 1 mmHg
dan
1 atm = 760 mmHg

Hubungan antara atmosfer dan pascal (lihat Lampiran 2) adalah

1 atm = 101.325 Pa
1 atm = 1,01325 x 10⁵ Pa

dan karena 1.000 Pa = 1 kPa (kilopascal)

1 atm = 1,01325 x 10² kPa
Gambar 5.3 Barometer untuk mengukur tekanan atmosfer. Di atas merkuri dalam tabung ada ruang hampa. (Ruang tersebut sebenarnya mengandung jumlah uap merkuri yang sangat kecil.) Kolom merkuri didorong oleh tekanan atmosfer.

Contoh 5.1 dan 5.2 menunjukkan konversi dari mmHg menjadi atm dan kPa.

Contoh 5.1
Tekanan di luar pesawat jet yang terbang pada ketinggian tinggi jauh di bawah tekanan atmosfer standar. Karena itu, udara di dalam kabin harus diberi tekanan untuk melindungi penumpang. Berapa tekanan di atmosfer di kabin jika pembacaan barometer adalah 688 mmHg?

Strategi
Karena 1 atm = 760 mmHg, faktor konversi berikut diperlukan untuk mendapatkan tekanan di atmosfer


Penyelesaian
Tekanan di kabin diberikan oleh
Latihan
Konversi 749 mmHg ke atmosfer.

Contoh 5.2

Tekanan atmosfer di San Francisco pada hari tertentu adalah 732 mmHg. Berapa tekanan dalam kPa?

Strategi

Diminta untuk mengkonversi mmHg menjadi kPa. Karena


1 atm = 1,01325 x 10⁵ Pa = 760 mmHg

faktor konversi yang dibutuhkan adalah

Penyelesaian
Tekanan dalam kPa adalah

Latihan
Konversi 295 mmHg menjadi kilopascal.

Manometer adalah alat yang digunakan untuk mengukur tekanan gas selain atmosfer. Prinsip operasi manometer mirip dengan barometer. Ada dua jenis manometer, ditunjukkan pada Gambar 5.4. Manometer tabung tertutup biasanya digunakan untuk mengukur tekanan di bawah tekanan atmosfer [Gambar 5.4 (a)], sedangkan manometer tabung terbuka lebih cocok untuk mengukur tekanan yang sama atau lebih besar dari tekanan atmosfer [Gambar 5.4 (b)].

Hampir semua barometer dan banyak manometer menggunakan merkuri sebagai fluida yang berfungsi, meskipun faktanya merkuri adalah zat beracun dengan uap berbahaya. Alasannya adalah bahwa merkuri memiliki kerapatan yang sangat tinggi (13,6 g/mL) dibandingkan dengan kebanyakan cairan lainnya. Karena ketinggian cairan dalam kolom berbanding terbalik dengan kerapatan cairan, sifat ini memungkinkan konstruksi barometer dan manometer kecil yang dikelola dengan baik.

Gambar 5.4 Dua jenis manometer yang digunakan untuk mengukur tekanan gas. (a) Tekanan gas lebih kecil dari tekanan atmosfer. (b) Tekanan gas lebih besar dari tekanan atmosfer.

Ulasan Konsep
Apakah akan lebih mudah untuk minum air dengan sedotan di atas atau di kaki gunung Mt. Everest?

5.1 Zat-zat Yang Berwujud Gas

Manusia hidup di dasar lautan udara yang komposisinya sekitar 78% gas N₂, 21% gas O₂, dan 1% gas lainnya, termasuk CO₂. Saat ini, sifat-sifat kimia dari campuran gas-gas penting ini telah menjadi sumber minat besar karena pengaruhnya terhadap kerusakan dan pencemaran lingkungan. Kimia atmosfer dan gas pencemar dibahas dalam Bab 17. Di bab ini akan difokuskan secara umum pada perilaku zat yang bewujud gas pada keadaan standar atau keadaan atmosfer normal, yang didefinisikan sebagai 25°C dan tekanan 1 atmosfer (atm).

Gambar 5.1 menunjukkan unsur-unsur yang berwujud gas pada keadaan atmosfer normal. Pertimbangkan bahwa gas hidrogen, nitrogen, oksigen, florin, dan klorin ada sebagai molekul diatomik: H₂, N₂, O₂, F₂, dan Cl₂. Alotrop oksigen, yaitu ozon (O₃), juga berwujud gas pada suhu kamar. Semua unsur dalam Golongan 8A, yaitu gas mulia, adalah gas monatomik: He, Ne, Ar, Kr, Xe, dan Rn.



Gambar 5.1 Unsur yang berwujud gas pada 25ºC dan 1 atm. Gas mulia (unsur Golongan 8A) adalah spesi monatomik; unsur-unsur gas lain berada sebagai molekul diatomik. Ozon (O₃) juga merupakan gas.

Tabel 5.1 Beberapa Zat Ditemukan Berwujud Gas pada 1 atm dan 25°C


Senyawa ionik tidak ada yang berwujud gas pada 25°C dan 1 atm, karena kation dan anion dalam padatan ionik disatukan oleh kekuatan elektrostatik yang sangat kuat; yaitu, kekuatan antara muatan positif dan negatif. Untuk mengatasi atraksi ini harus diterapkan sejumlah besar energi, yang dalam praktiknya dengan cara memanaskan benda padat menggunakan kekuatan panas yang tinggi. Dalam kondisi normal, yang bisa dilakukan hanyalah melelehkan padatan; misalnya, NaCl meleleh pada suhu agak tinggi 800°C. Untuk mendidihkannya, kita harus menaikkan suhu hingga di atas 1.000°C.

Perilaku senyawa molekul (biasanya senyawa kovalen) lebih bervariasi. Beberapa — misalnya, CO, CO₂, HCl, NH₃, dan CH₄ (metana) —adalah gas, tetapi sebagian besar senyawa kovalen adalah cairan atau padatan pada suhu kamar. Namun, pada pemanasan senyawa kovalen dikonversi menjadi gas, jauh lebih mudah daripada senyawa ionik. Dengan kata lain, senyawa kovalen biasanya mendidih pada suhu yang jauh lebih rendah daripada senyawa ionik. Tidak ada aturan sederhana untuk membantu kita menentukan apakah suatu senyawa kovalen tertentu berwujud gas dalam kondisi atmosfer normal. Untuk membuat tekad seperti itu, perlu dipahami sifat dan besarnya kekuatan-kekuatan atraktif di antara molekul-molekul, yang disebut gaya antarmolekul (dibahas pada Bab 11)Secara umum, semakin kuat daya tarik ini, semakin kecil kemungkinan senyawa dapat eksis sebagai gas pada suhu normal.



Dari gas yang tercantum dalam Tabel 5.1, hanya O₂ yang penting untuk kelangsungan hidup di bumi. Hidrogen sulfida (H₂S) dan hidrogen sianida (HCN) merupakan senyawa racun yang mematikan. Beberapa lainnya, seperti CO, NO₂, O₃, dan SO₂, agak kurang beracun. Gas-gas He, Ne, dan Ar secara kimia inert; yaitu, semuanya tidak bereaksi dengan zat lain apa pun. Sebagian besar gas tidak berwarna. Pengecualian adalah F₂, Cl₂, dan NO₂. Warna gelap-coklat dari NO₂ kadang-kadang terlihat di udara yang tercemar. Semua gas memiliki karakteristik fisik berikut:
  • Gas memilik volume dan bentuk menyerupai wadahnya.
  • Gas merupakan wujud materi yang paling mudah dimampatkan.
  • Gas-gas akan segera bercampur secara merata dan sepenuhnya jika ditempatkan pada wadah yang sama.
  • Gas memiliki kerapatan jauh lebih rendah daripada cairan dan padatan.

V terhadap P Pada Suhu (T) Tetap

V terhadap T Pada Tekanan (P) Tetap


5. Gas



KONSEP PENTING
  • Diulai dengan mempelajari zat-zat yang berwujud gas dan sifat-sifat umumnya. (5.1)
  • Satuan untuk menyatakan tekanan gas dan sifat tekanan atmosfer. (5.2)
  • Hubungan antara tekanan, volume, suhu, dan jumlah (mol) gas dalam kaitannya dengan berbagai hukum gas. Hukum-hukum ini dapat dirangkum dengan persamaan gas ideal, yang dapat digunakan untuk menghitung kerapatan atau massa molar gas. (5.3 dan 5.4)
  • Persamaan gas ideal dapat digunakan untuk mempelajari stoikiometri yang melibatkan gas. (5.5)
  • Perilaku campuran gas dapat dipahami dengan hukum tekanan parsial Dalton, yang merupakan perluasan dari persamaan gas ideal. (5.6)
  • Teori kinetika molekul gas, yang didasarkan pada sifat-sifat masing-masing molekul, dapat digunakan untuk menggambarkan sifat makroskopis seperti tekanan dan suhu gas. Teori ini memungkinkan untuk memperoleh persamaan kecepatan molekul pada suhu tertentu, dan memahami fenomena seperti difusi gas dan efusi gas. (5.7)
  • Faktor koreksi untuk perilaku gas non-ideal menggunakan persamaan van der Waals. (5.8)
Dalam keadaan tekanan dan suhu tertentu, sebagian besar zat dapat berada pada salah satu dari tiga wujud materi: padat, cair, atau gas. Air, misalnya, bisa berupa padat, cair atau gas. Sifat fisika suatu zat seringkali tergantung pada keadaannya.

Gas adalah bahan kajian bab 5 ini, lebih sederhana daripada cairan dan padatan dalam banyak hal. Gerakan molekul dalam gas benar-benar acak, dan kekuatan tarik-menarik antar molekul gas sangat kecil sehingga setiap molekul bergerak bebas dan pada dasarnya tidak tergantung pada molekul lain. Mengalami perubahan suhu dan tekanan, lebih mudah untuk memprediksi perilaku gas. Hukum yang mengatur perilaku ini telah memainkan peran penting dalam pengembangan teori atom dan teori kinetika molekul gas.


Tugas 4


4.1 Larutan dalam air dari tiga senyawa ditunjukkan dalam gambar. Identifikasi setiap senyawa sebagai non-elektrolit, elektrolit lemah, dan elektrolit kuat!
4.2 Identifikasi masing-masing zat berikut ini sebagai elektrolit kuat, elektrolit lemah, atau nonelektrolit:
(a) H₂O
(b) KCl
(c) HNO₃
(d) CH₃COOH
(e) C₁₂H₂₂O₁₁

4.3 Arus listrik dapat melalui larutan elektrolit disebabkan oleh pergerakan
(a) elektron saja
(b) kation saja
(c) anion saja
(d) kation dan anion

4.4 Anda diberi senyawa X yang larut dalam air. Jelaskan bagaimana Anda akan menentukan apakah itu elektrolit atau nonelektrolit! Jika itu adalah elektrolit, bagaimana Anda menentukan apakah itu kuat atau lemah?

4.5 Dua larutan AgNO₃ dan NaCl dicampur. Manakah dari gambar berikut yang paling merepresentasi campuran?

4.6 Kelompokan senyawa berikut sebagai larut atau tidak larut dalam air:
(a) Ca₃(PO₄)₂
(b) Mn(OH)₂
(c) AgClO₃
(d) K₂S

4.7 Tuliskan persamaan ionik dan persamaan ionik bersih untuk reaksi berikut:
(a) AgNO₃(aq) + Na₂SO₄(aq) →
(b) BaCl₂(aq) + ZnSO₄(aq) →
(c) (NH₄)₂CO₃(aq) + CaCl₂(aq) →

4.8 Manakah dari proses berikut yang kemungkinan akan menghasilkan reaksi pengendapan?
(a) Mencampur larutan NaNO₃ dengan larutan CuSO₄
(b) Mencampur larutan BaCl₂ dengan larutan K₂SO₄
(c)Tuliskan persamaan ion bersih untuk reaksi pengendapannya!

4.9 Identifikasi masing-masing spesi berikut sebagai asam Brønsted, basa Brønsted, atau keduanya: (a) HI
(b) CH₃COO⁻
(c) H₂PO₄⁻
(d) HSO₄⁻

4.10 Setarakan persamaan berikut dan tulis persamaan ionik dan persamaan ionik bersih yang sesuai (jika sesuai):
(a) HBr (aq) + NH₃ (aq) →
(b) Ba(OH)₂ (aq) + H₃PO₄ (aq) →
(c) HClO₄ (aq) + Mg(OH)₂ (s) →

4.11 Untuk reaksi redoks lengkap yang diberikan di sini, (i) pecahka setiap reaksi menjadi setengah-reaksi; (ii) identifikasi zat pengoksidasi; (iii) identifikasi agen pereduksi.
(a) 2Sr + O₂ → 2SrO
(b) 2Li + H₂ → 2LiH
(c) 2Cs + Br₂ → 2CsBr
(d) 3Mg + N₂ → Mg₃N₂

4.12 Susun spesi berikut dalam urutan peningkatan bilangan oksidasi atom belerang:
(a) H₂S
(b) S₈
(c) H₂SO₄
(d) S²⁻
(e) HS⁻
(f) SO₂
(g) SO₃

4.13 Berikan bilangan oksidasi dari atom-atom yang digaris bawahi dalam molekul dan ion berikut: 
(a) ClF
(b) IF₇
(c) CH₄
(d) C₂H₂
(e) C₂H₄
(f ) K₂CrO₄
(g) K₂Cr₂O₇
(h) KMnO₄
(i) NaHCO₃
(j) Li
(k) NaIO₃
(l) KO
(m) PF₆⁻
(n) KAuCl₄

4.14 Tuliskan bilangan oksidasi untuk atom-atom yang digaris bawahi dalam molekul dan ion berikut: 
(a) Cs₂O
(b) CaI
(c) Al₂O₃
(d) H₃AsO₃
(e) TiO₂
( f) MoO₄²⁻
(g) PtCl₄²⁻
(h) PtCl₆²⁻
(i) SnF₂
(j) ClF₃
(k) SbF₆⁻

4.15 Asam nitrat adalah zat pengoksidasi yang kuat. Nyatakan yang mana dari spesi berikut ini yang paling mungkin dihasilkan jika asam nitrat bereaksi dengan zat pereduksi kuat seperti logam seng, dan jelaskan alasannya: N₂O, NO, NO₂, N₂O₄, N₂O₅, NH₄⁺.

4.16 Atas dasar pertimbangan bilangan oksidasi, salah satu oksida berikut tidak akan bereaksi dengan molekul oksigen: NO, N₂O, SO₂, SO₃, P₄O₆. Yang mana? Mengapa?

4.17 Klasifikasikan reaksi redoks berikut:
(a) 2H₂O₂ → 2H₂O + O₂
(b) Mg + 2AgNO₃ → Mg(NO₃)₂ + 2Ag
(c) NH₄NO₂ → N₂ + 2H₂O
(d) H₂ + Br₂ → 2HBr

4.18 Hitung massa KI dalam gram yang dibutuhkan untuk menyiapkan 5,00 x 10² mL larutannya dengan konsentrasi 2,80 M.

4.19 Berapa mol MgCl₂ yang ada dalam 60,0 mL larutan 0,100 M MgCl₂?

4.20 Hitung molaritas masing-masing larutan berikut:
(a) 29,0 g etanol (C₂H₅OH) dalam 545 mL larutan
(b) 15,4 g sukrosa (C₁₂H₂₂O₁₁) dalam 74,0 mL larutan
(c) 9,00 g natrium klorida (NaCl) dalam 86,4 mL larutan

4.21 Hitung volume dalam mL larutan yang diperlukan untuk memberikan:
(a) 2,14 g natrium klorida dari larutan 0,270 M
(b) 4,30 g etanol dari larutan 1,50 M
(c) 0,85 g asam asetat (CH₃COOH) dari larutan 0,30 M

4.22 Jelaskan cara menyiapkan 1,00 L dari larutan 0,646 M HCl, dimulai dengan larutan 2,00 M HCl.

4.23 Bagaimana Anda mempersiapkan 60,0 mL 0,200 M HNO₃ dari larutan stok 4,00 M HNO₃?

4.24 Suatu larutan 35,2 mL, 1,66 M KMnO₄ dicampur dengan 16,7 mL larutan 0,892 M KMnO₄. Hitung konsentrasi larutan akhir!

4.25 Jika 30,0 mL 0,150 M CaCl₂ ditambahkan ke 15,0 mL 0,100 M AgNO₃, berapakah massa dalam gram endapan AgCl?

4.26 Berapa gram NaCl yang dibutuhkan untuk mengendapkan sebagian besar ion Ag⁺ dari 2,50 x 10² mL larutan 0,0113 M AgNO₃? Tuliskan persamaan ion bersih untuk reaksi!

4.27 Sejumlah 18,68 mL larutan KOH diperlukan untuk menetralkan 0,4218 g KHP. Berapa konsentrasi (dalam molaritas) larutan KOH?

4.28 Hitung volume dalam mL larutan NaOH 1,420 M yang diperlukan untuk menditrasi larutan berikut:
(a) 25,00 mL larutan 2,430 M HCl
(b) 25,00 mL larutan 4,500 M H₂SO₄
(c) 25,00 mL larutan 1,500 M H₃PO₄

4.29 Besi (II) dapat dioksidasi dengan larutan asam K₂Cr₂O₇ menurut persamaan ion bersih:
Cr₂O₇²⁻ + 6Fe²⁺ + 14H⁺ → 2Cr³⁺ + 6Fe³⁺ + 7H₂O
Jika dibutuhkan 26,0 mL 0,0250 M K₂Cr₂O₇ untuk menditrasi 25,0 mL larutan yang mengandung Fe²⁺, berapakah konsentrasi molar Fe²⁺?

4.30 Sampel bijih besi (hanya mengandung ion Fe²⁺) dengan berat 0,2792 g dilarutkan dalam larutan asam encer, dan semua Fe (II) dikonversi menjadi ion Fe (III). Larutannya diperlukan 23,30 mL 0,0194 M K₂Cr₂O₇ untuk titrasi. Hitung persentase berdasarkan berat besi dalam bijih. (Petunjuk: Lihat Soal 4.91 untuk persamaan yang setara)

4.31 Asam oksalat (H₂C₂O₄) ada dalam banyak tanaman dan sayuran. Jika 24,0 mL larutan 0,0100 M KMnO₄ diperlukan untuk menditrasi 1,00 g sampel H₂C₂O₄ ke titik ekivalen, berapakah persentase massa H₂C₂O₄ dalam sampel? Persamaan ion bersih adalah
2MnO₄⁻ + 16H⁺ + 5C₂O₄²⁻ → 2Mn²⁺ + 10CO₂ + 8H₂O

4.32 Ion Iodat (IO₃⁻) mengoksidasi SO₃²⁻ dalam larutan asam. Setengah reaksi untuk oksidasi adalah
SO₃²⁻ + H₂O → SO₄²⁻ + 2H⁺ ⁺ 2e⁻ 
Sampel larutan 100,0 mL yang mengandung 1,390 g KIO₃ bereaksi dengan 32,5 mL 0,500 M Na₂SO₃. Bagaimana keadaan oksidasi akhir yodium setelah reaksi terjadi?

JAWABAN

Latihan 4

 

4.1 Definisikan yang dimaksud zat terlarut, pelarut dan larutan dengan menjelaskan proses melarutkan zat padat ke dalam cairan!

4.2 Apa perbedaan antara elektrolit dan nonelektrolit? Antara elektrolit lemah dan elektrolit kuat?

4.3 Jelaskan arti hidrasi. Sifat apa yang memungkinkan molekul air berinteraksi dengan ion dalam larutan?

4.4 Apa perbedaan antara simbol-simbol berikut dalam persamaan kimia: → dan ⇋?

4.5 Air adalah elektrolit yang sangat lemah dan karenanya tidak dapat menghantarkan listrik. Mengapa kita sering diperingatkan untuk tidak mengoperasikan peralatan listrik jika tangan kita basah?

4.6 Litium florida (LiF) adalah elektrolit yang kuat. Spesi apa yang ada dalam LiF(aq)?

4.7 Apa perbedaan antara persamaan ionik dan persamaan molekul?

4.8 Apa keuntungan dari menuliskan persamaan ionik bersih?

4.9 Sebutkan sifat umum larutan asam dan larutan basa!

4.10 Berikan definisi asam dan basa menurut Arrhenius dan menurut Brønsted! Mengapa definisi Brønsted lebih berguna dalam menggambarkan sifat asam-basa?

4.11 Berikan contoh asam monoprotik, asam diprotik, dan asam triprotik!

4.12 Apa sifat dari reaksi netralisasi asam-basa?

4.13 Faktor-faktor apa yang memenuhi syarat suatu senyawa sebagai garam? Tentukan senyawa mana yang merupakan garam: CH₄, NaF, NaOH, CaO, BaSO₄, HNO₃, NH₃, KBr?

4.14 Identifikasi spesi berikut sebagai asam kuat, asam lemah, basa lemah atau basa kuat:
(a) NH₃
(b) H₃PO₄
(c) LiOH
(d) HCOOH (asam format)
(e) H₂SO₄
(f) HF
(g) Ba(OH)₂

4.14 Berikan contoh reaksi redoks pembentukan, reaksi redoks penguraian, dan reaksi redoks substitusi!

4.15 Semua reaksi pembakaran adalah reaksi redoks. Benar atau salah? Jelaskan!

4.16 Apa yang dimaksud dengan bilangan oksidasi? Bagaimana bilangan ini digunakan untuk mengidentifikasi reaksi redoks? Jelaskan mengapa, kecuali untuk senyawa ionik, bilangan oksidasi tidak memiliki ciri-ciri fisik apa pun!

4.17 (a) Tanpa mengacu pada Gambar 4.11, berikan bilangan oksidasi logam alkali dan logam alkali tanah dalam senyawanya!
(b) Tuliskan bilangan oksidasi tertinggi yang dapat dimiliki oleh unsur Golongan IIIA-VIIA.

4.18 Bagaimana seri aktifitas disusun? Bagaimana seri ini digunakan dalam studi reaksi redoks?

4.19 Gunakan reaksi berikut untuk menentukan reaksi redoks, setengah reaksi, zat pengoksidasi, zat pereduksi:
4Na (s) + O₂ (g) → 2Na₂O (s)

4.20 Apakah mungkin untuk memiliki reaksi di mana oksidasi terjadi tetapi reduksi tidak terjadi? Jelaskan!

4.21 Apa persyaratan agar suatu unsur dapat mengalami reaksi disproporsionasi? Sebutkan beberapa unsur umum yang cenderung terlibat dalam reaksi tersebut!

4.22 Tulis persamaan untuk menghitung molaritas! Mengapa molaritas merupakan satuan konsentrasi yang nyaman digunakan dalam kimia?

4.23 Jelaskan langkah-langkah yang terlibat dalam menyiapkan larutan yang konsentrasi molarnya diketahui dengan menggunakan labu volumetrik!

4.24 Jelaskan langkah-langkah dasar yang terlibat dalam pengenceran larutan yang konsentrasinya diketahui!

4.25 Tulis persamaan yang memungkinkan kita menghitung konsentrasi larutan encer! Definsikan simbol dalam semua persamaan!

4.26 Jelaskan langkah-langkah dasar yang terlibat dalam analisis gravimetri! Bagaimana prosedur ini membantu kita menentukan identitas suatu senyawa atau kemurnian senyawa jika rumusnya diketahui?

4.27 Air suling harus digunakan dalam analisis gravimetri klorida. Mengapa?

4.28 Jelaskan langkah-langkah dasar yang terlibat dalam titrasi asam-basa! Mengapa teknik ini bernilai praktis?

4.29 Bagaimana cara kerja indikator asam-basa?

4.30 Seorang siswa melakukan dua titrasi menggunakan larutan NaOH dengan konsentrasi yang tidak diketahui dalam buret. Pada titrasi pertama dia menimbang 0,2458 g KHP (lihat bagian 4.7) dan memindahkannya ke Erlenmeyer. Dia kemudian menambahkan 20,00 mL air suling untuk melarutkan asam. Dalam titrasi kedua dia menimbang 0,2507 g KHP tetapi menambahkan 40,00 mL air suling untuk melarutkan asam. Dengan asumsi tidak ada kesalahan eksperimental, akankah ia memperoleh hasil yang sama untuk konsentrasi larutan NaOH? Jelaskan!

4.31 Apakah volume larutan NaOH 0,10 M yang dibutuhkan untuk titrasi 25,0 mL larutan 0,10 M HNO₂ (asam lemah) berbeda dari yang diperlukan untuk titrasi 25,0 mL larutan 0,10 M HCl (asam kuat)?

4.32 Apa persamaan dan perbedaan antara titrasi asam-basa dan titrasi redoks?

4.31 Jelaskan mengapa kalium permanganat (KMnO₄) dan kalium dikromat (K₂Cr₂O₇) dapat berfungsi sebagai indikator internal dalam titrasi redoks!

Kata Kunci 4


Agen pengoksidasi/Oksidator
Agen pereduksi/Reduktor
Analisis gravimetri
Analisis kuantitatif
Asam Brønsted
Asam diprotik
Asam monoprotik,
Asam triprotik
Basa Brønsted
Bilangan oksidasi
Elektrolit
Garam
Hidrasi
Indikator
Ion hidronium
Ion penonton
Keadaan oksidasi
Kelarutan
Konsentrasi larutan
Konsentrasi molar
Larutan
Larutan dalam air
Larutan standar
Molaritas (M)
Nonelektrolit
Pelarut
Pengenceran
Pengendapan
Persamaan ionik
Persamaan ionik bersih
Persamaan molekul
Reaksi disproporsionasi
Reaksi kombinasi/Pembentukan
Reaksi metatesis
Reaksi netralisasi
Reaksi oksidasi
Reaksi pembakaran
Reaksi penguraian
Reaksi perpindahan/substitusi
Reaksi presipitasi/pengendapan
Reaksi redoks
Reaksi reduksi
Reaksi reduksi oksidasi
Reaksi yang dapat dibalik
Seri aktivitas
Setengah reaksi
Titik ekivalen
Titrasi
Zat terlarut

Ringkasan Pengetahuan Faktual dan Konseptual 4


  1. Larutan encer menghantarkan listrik jika zat terlarutnya adalah elektrolit. Jika zat terlarutnya adalah nonelektrolit, maka larutannya tidak menghantarkan listrik.
  2. Tiga kategori utama dari reaksi kimia yang terjadi di larutan dalam air adalah reaksi presipitasi, reaksi asam-basa, dan reaksi reduksi oksidasi.
  3. Dari aturan umum tentang kelarutan senyawa ion, kita dapat memprediksi apakah endapan akan terbentuk dalam suatu reaksi.
  4. Asam Arrhenius terionisasi dalam air menghasilkan ion H⁺, dan basa Arrhenius terionisasi dalam air untuk menghasilkan ion OH⁻. Asam Brønsted menyumbangkan proton, dan basa Brønsted menerima proton.
  5. Reaksi asam kuat dan basa kuat disebut reaksi netralisasi.
  6. Dalam reaksi redoks, oksidasi dan reduksi selalu terjadi secara bersamaan. Oksidasi ditandai dengan lepasnya elektron, reduksi ditandai penerimaan elektron.
  7. Bilangan oksidasi membantu kita melacak distribusi muatan dan dikenakan pada semua atom dalam suatu senyawa atau ion sesuai dengan aturan tertentu. Oksidasi dapat didefinisikan sebagai peningkatan bilangan oksidasi; reduksi dapat didefinisikan sebagai penurunan bilangan oksidasi.
  8. Banyak reaksi redoks dapat disubklasifikasi sebagai reaksi pembentukan, penguraian, pembakaran, perpindahan (substitusi), atau reaksi disproporsionasi.
  9. Konsentrasi larutan adalah jumlah zat terlarut yang ada dalam jumlah larutan yang diberikan. Molaritas menyatakan konsentrasi sebagai jumlah mol zat terlarut dalam 1 L larutan.
  10. Menambahkan pelarut ke dalam larutan, suatu proses yang dikenal sebagai pengenceran, menurunkan konsentrasi (molaritas) larutan tanpa mengubah jumlah mol zat terlarut yang ada dalam larutan.
  11. Analisis gravimetri adalah teknik untuk menentukan identitas suatu senyawa dan / atau konsentrasi larutan dengan mengukur massa. Eksperimen gravimetri sering melibatkan reaksi presipitasi.
  12. Dalam titrasi asam-basa, konsentrasi larutan yang diketahui (katakanlah, basa) ditambahkan secara bertahap pada larutan yang konsentrasi belum diketahui (katakanlah, asam) dengan tujuan menentukan konsentrasi larutan yang belum diketahui. Titik di mana reaksi dalam titrasi selesai, seperti yang ditunjukkan oleh perubahan warna indikator, disebut titik ekivalen.
  13. Titrasi redoks mirip dengan titrasi asam-basa. Titik di mana reaksi reduksi oksidasi selesai disebut titik ekivalen.

Rumus Penting 4


Rumus yang harus diingat adalah

Logam Dari Laut

Magnesium adalah logam ringan dan berharga yang digunakan sebagai bahan struktural serta dalam paduan, baterai, dan sintesis kimia. Meskipun magnesium berlimpah di kerak bumi, lebih murah untuk “menambang” logam dari air laut. Magnesium membentuk kation paling melimpah kedua di laut (setelah natrium); ada sekitar 1,3 g magnesium dalam satu kilogram air laut. Proses untuk mendapatkan magnesium dari air laut menggunakan ketiga jenis reaksi yang dibahas dalam bab ini: reaksi presipitasi, asam-basa, dan redoks.

Breathalyzer (alat yang digunakan oleh polisi untuk mengukur kadar alkohol dalam napas pengemudi)

Setiap tahun di Amerika Serikat sekitar 25.000 orang tewas dan 500.000 lainnya terluka akibat mengemudi dalam keadaan mabuk. Terlepas dari upaya untuk mengedukasi masyarakat tentang bahaya mengemudi saat mabuk dan hukuman lebih berat untuk pelanggaran mengemudi dalam keadaan mabuk, agen penegak hukum masih harus mencurahkan banyak pekerjaan untuk mengeluarkan pengemudi mabuk dari jalan Amerika.

4.8 Titrasi Redoks

Seperti disebutkan sebelumnya, reaksi redoks melibatkan transfer elektron, dan reaksi asam-basa melibatkan transfer proton. Sama seperti asam yang dapat dititrasi terhadap basa, kita dapat menditrasi zat pengoksidasi terhadap zat pereduksi, menggunakan prosedur yang serupa. Kita dapat secara hati-hati menambahkan larutan yang mengandung zat pengoksidasi ke dalam larutan yang mengandung zat pereduksi. Titik ekivalen tercapai ketika zat pereduksi sepenuhnya dioksidasi oleh zat pengoksidasi.


Seperti halnya titrasi asam-basa, titrasi redoks biasanya membutuhkan indikator yang berubah warna dengan jelas. Bersama sejumlah besar zat pereduksi, warna indikator adalah khas untuk zat yang tereduksi. Indikator mengasumsikan warna terbentuk ketika zat teroksidasi hadir dalam media pengoksidasi. Pada atau di dekat titik ekivalen, perubahan tajam dalam warna indikator akan terjadi karena perubahan dari satu bentuk ke yang lain, sehingga titik ekivalen dapat dengan mudah diidentifikasi.



Dua zat pengoksidasi yang umum adalah kalium permanganat (KMnO₄) dan kalium dikromat (K₂Cr₂O₇). Seperti yang ditunjukkan Gambar 4.22, warna-warna anion permanganat dan dikromat berbeda dengan warna dari spesi yang tereduksi:


Gambar 4.22 Kiri ke kanan: Larutan yang mengandung ion MnO₄⁻, Mn²⁺, Cr₂O₇²⁻, dan Cr³⁺.

Dengan demikian, zat pengoksidasi ini sendiri dapat digunakan sebagai indikator internal dalam titrasi redoks karena mereka memiliki warna yang sangat berbeda dalam bentuk teroksidasi dan tereduksi.

Titrasi redoks memerlukan jenis perhitungan yang sama (berdasarkan metode mol) seperti netralisasi asam-basa. Perbedaannya adalah bahwa persamaan dan stoikiometri cenderung lebih kompleks untuk reaksi redoks. Berikut ini adalah contoh titrasi redoks.

Contoh 4.12
Diperlukan 16,42 mL volume  larutan KMnO₄ 0,1327 M untuk mengoksidasi 25,00 mL larutan FeSO₄ dalam media asam. Berapa konsentrasi larutan FeSO₄ dalam molaritas? Persamaan ionik bersih adalah

5Fe²⁺ + MnO₄⁻ + 8H⁺  Mn²⁺ + 5Fe³⁺ + 4H₂O

Strategi

Kita ingin menghitung molaritas dari larutan FeSO₄. Dari definisi molaritas
Volume larutan FeSO₄ diberikan dalam soal. Oleh karena itu, kita perlu menemukan jumlah mol FeSO₄ untuk dipecahkan menjadi molaritas. Dari persamaan ion bersih, berapakah kesetaraan stoikiometrik antara Fe²⁺ dan MnO₄⁻? Berapa mol KMnO₄ yang terkandung dalam 16,42 mL larutan 0,1327 M KMnO₄?

Penyelesaian
Jumlah mol KMnO₄ dalam 16,42 mL larutan adalah
Jumlah mol KMnO₄ dalam 16,42 mL larutan adalah Dari persamaan ion bersih kita melihat bahwa 5 mol Fe²⁺ 1 mol MnO₄⁻. Oleh karena itu, jumlah mol FeSO₄ teroksidasi adalah
Konsentrasi larutan FeSO₄ dalam mol FeSO₄ per liter larutan adalah

Latihan
Berapa mililiter larutan 0,206 M HI diperlukan untuk mereduksi 22,5 mL larutan 0,374 M KMnO₄ sesuai dengan persamaan berikut:
10HI + 2KMnO₄ + 3H₂SO₄ → 5I₂ + 2MnSO₄ + K₂SO₄ + 8H₂O

4.7 Titrasi Asam Basa

Studi kuantitatif reaksi netralisasi asam-basa paling mudah dilakukan dengan menggunakan teknik yang dikenal sebagai titrasi. Dalam titrasi, konsentrasi larutan diketahui secara akurat, yang disebut larutan standar, ditambahkan secara bertahap ke larutan lain dengan konsentrasi yang tidak diketahui, sampai reaksi kimia antara kedua larutan selesai. Jika kita mengetahui volume larutan standar dan larutan yang tidak diketahui yang digunakan dalam titrasi, bersama dengan konsentrasi larutan standar, kita dapat menghitung konsentrasi larutan yang tidak diketahui tersebut.


Natrium hidroksida adalah salah satu pangkalan yang biasa digunakan di laboratorium. Namun, sulit untuk mendapatkan natrium hidroksida padat dalam bentuk murni karena memiliki kecenderungan untuk menyerap air dari udara, dan larutannya bereaksi dengan karbon dioksida. Untuk alasan ini, larutan natrium hidroksida harus distandarisasi sebelum dapat digunakan dalam pekerjaan analitik yang akurat. Kita dapat menstandarkan larutan natrium hidroksida dengan menditrasi larutan asam dengan konsentrasi yang diketahui secara akurat. Asam yang sering dipilih untuk tugas ini adalah asam monoprotik yang disebut kalium hidrogen ptalat (KHP), di mana rumus molekulnya adalah KHC₈H₄O₄ (massa molar = 204,2 g). KHP adalah padatan putih yang dapat larut yang tersedia secara komersial dalam bentuk sangat murni. Reaksi antara KHP dan natrium hidroksida adalah



KHC₈H₄O₄(aq) + NaOH(aq) → KNaC₈H₄O₄(aq) + H₂O(l)

dan persamaan ion bersihnya adalah


HC₈H₄O₄⁻(aq) + OH⁻(aq) → C₈H₄O₄²⁻(aq) + H₂O(l)

Prosedur untuk titrasi ditunjukkan pada Gambar 4.21. Pertama, jumlah KHP yang diketahui dipindahkan ke Erlenmeyer dan beberapa air suling ditambahkan untuk membuat larutan. Selanjutnya, larutan NaOH ditambahkan dengan hati-hati ke larutan KHP dari buret sampai kita mencapai titik ekivalen, yaitu titik di mana asam telah sepenuhnya bereaksi dengan atau dinetralkan oleh basa. Titik ekivalen biasanya ditandai oleh perubahan tajam dalam warna indikator dalam larutan asam. Dalam titrasi asam-basa, indikator adalah zat yang memiliki warna berbeda secara jelas dalam media asam dan basa. Salah satu indikator yang umum digunakan adalah fenolftalein, yang tidak berwarna dalam larutan asam dan netral tetapi merah muda kemerahan dalam larutan dasar. Pada titik ekivalen, semua KHP telah dinetralkan oleh NaOH yang ditambahkan dan larutan masih tidak berwarna. Namun, jika kita menambahkan hanya satu tetes lagi larutan NaOH dari buret, larutannya akan segera menjadi merah muda karena larutannya sekarang basa. Contoh 4.10 menggambarkan titrasi semacam itu.


Gambar 4.21 (a) Peralatan untuk titrasi asam-basa. Larutan NaOH ditambahkan dari buret ke larutan KHP dalam labu Erlenmeyer. (b) Warna merah muda kemerahan muncul ketika titik ekivalen tercapai. Warna di sini telah diintensifkan untuk tampilan visual.

Contoh 4.10
Dalam percobaan titrasi, seorang siswa menemukan bahwa 23,48 mL larutan NaOH diperlukan untuk menetralkan 0,5468 g KHP. Berapa konsentrasi (dalam molaritas) larutan NaOH?


Strategi

Kita ingin menentukan molaritas larutan NaOH. Apa definisi molaritas?
 
Volume larutan NaOH diberikan dalam soal. Oleh karena itu, kita perlu menemukan jumlah mol NaOH untuk dipecahkan untuk molaritas. Dari persamaan sebelumnya untuk reaksi antara KHP dan NaOH yang ditunjukkan dalam teks kita melihat bahwa 1 mol KHP menetralkan 1 mol NaOH. Berapa mol KHP yang terkandung dalam 0,5468 g KHP?


Penyelesaian

Pertama, kita menghitung jumlah mol KHP yang dikonsumsi dalam titrasi:

= 2,678 x 10⁻³ mol KHP


Karena 1 mol KHP ∞ 1 mol NaOH, harus ada 2,678 x 10⁻³ mol NaOH dalam 23,48 mL larutan NaOH. Akhirnya, kita menghitung jumlah mol NaOH dalam 1 L larutan atau molaritas sebagai berikut:

Latihan
Berapa gram KHP yang dibutuhkan untuk menetralkan 18,64 mL larutan 0,1004 M NaOH?

Reaksi netralisasi antara NaOH dan KHP adalah salah satu jenis netralisasi asam-basa paling sederhana yang diketahui. Namun, seandainya, alih-alih KHP, kita ingin menggunakan asam diprotik seperti H₂SO₄ untuk titrasi. Reaksi diwakili oleh

2NaOH(aq) + H₂SO₄(aq) → Na₂SO₄(aq) + 2H₂O(l)

Karena 2 mol NaOH ∞ 1 mol H₂SO₄, kita membutuhkan NaOH dua kali lebih banyak untuk bereaksi sepenuhnya dengan larutan H₂SO₄ dengan konsentrasi dan volume molar yang sama dengan asam monoprotik seperti HCl. Di sisi lain, kita akan membutuhkan dua kali jumlah HCl untuk menetralkan larutan Ba(OH)₂ dibandingkan dengan larutan NaOH yang memiliki konsentrasi dan volume yang sama karena 1 mol Ba(OH)₂ menghasilkan 2 mol ion OH⁻:

2HCl(aq) + Ba(OH)₂(aq) → BaCl₂(aq) + 2H₂O(l)

Dalam perhitungan yang melibatkan titrasi asam basa, terlepas dari asam atau basa yang terbentuk dalam reaksi, perlu diingat bahwa jumlah total mol ion H⁺ yang bereaksi pada titik ekivalen harus sama dengan jumlah total mol ion OH⁻ yang bereaksi.

Contoh 4.11 menunjukkan titrasi larutan NaOH dengan asam diprotik.

Contoh 4.11
Berapa mililiter (mL) larutan NaOH 0,610 M yang dibutuhkan untuk menetralkan 20,0 mL larutan 0,245 M H₂SO₄?


Strategi

Kita ingin menghitung volume larutan NaOH. Dari definisi molaritas [lihat Persamaan (4.1)], kita menulis
Dari persamaan untuk reaksi netralisasi yang baru saja ditunjukkan, kita melihat bahwa 1 mol H₂SO₄ menetralkan 2 mol NaOH. Berapa mol H₂SO₄ yang terkandung dalam 20,0 mL larutan 0,245 M H₂SO₄? Berapa mol NaOH yang akan dinetralkan oleh kuantitas H₂SO₄ ini?


Penyelesaian
Pertama-tama kita menghitung jumlah mol H₂SO₄ dalam larutan 20,0 mL:
Dari stoikiometri kita melihat bahwa 1 mol H₂SO₄ ∞ 2 mol NaOH. Oleh karena itu, jumlah mol NaOH yang direaksikan harus 2 x 4,90 x 10⁻³ mol, atau 9,80 x 10⁻³ mol. Dari definisi molaritas [lihat Persamaan (4.1)], kita miliki
atau

Latihan
Berapa mililiter larutan 1,28 M H₂SO₄ yang dibutuhkan untuk menetralkan 60,2 mL larutan 0,427 M KOH?

Ulasan Konsep
Larutan NaOH pada awalnya dicampur dengan larutan asam yang ditunjukkan pada (a). Manakah dari diagram yang ditunjukkan pada (b) - (d) sesuai dengan salah satu dari asam berikut: HCl, H₂SO₄, H₃PO₄? Kode warna: Bola biru (ion OH⁻); bola merah (molekul asam); bola hijau (anion dari asam). Asumsikan semua reaksi netralisasi asam-basa berjalan sempurna.


4.6 Analisis Gravimetri

Analisis gravimetri adalah teknik analitik berdasarkan pengukuran massa. Salah satu jenis eksperimen analisis gravimetri melibatkan pembentukan, isolasi, dan penentuan massa endapan. Secara umum, prosedur ini diterapkan pada senyawa ionik. Pertama, zat sampel dengan komposisi yang tidak diketahui dilarutkan dalam air dan dibiarkan bereaksi dengan zat lain membentuk endapan. Kemudian endapan disaring, dikeringkan, dan ditimbang. Mengetahui massa dan rumus kimia dari endapan yang terbentuk, kita dapat menghitung massa komponen kimia tertentu (yaitu, anion atau kation) dari sampel awal. Akhirnya, dari massa komponen dan massa sampel awal, kita dapat menentukan persentase komposisi berdasarkan massa komponen dalam senyawa awal.

Reaksi yang sering dipelajari dalam analisis gravimetri, karena reaktan dapat diperoleh dalam bentuk murni, adalah



AgNO₃(aq) + NaCl(aq) → NaNO₃(aq) + AgCl(s)

Persamaan ion bersihnya adalah


Ag⁺(aq) + Cl⁻(aq) → AgCl(s)

Endapannya adalah perak klorida (lihat Tabel 4.2). Sebagai contoh, katakanlah kita ingin menentukan secara eksperimen persentase berdasarkan massa Cl dalam NaCl. Pertama, kita akan menimbang sampel NaCl secara akurat dan melarutkannya dalam air. Selanjutnya, kita akan menambahkan larutan AgNO₃ yang cukup ke dalam larutan NaCl untuk menyebabkan pengendapan semua ion Cl⁻ yang ada dalam larutan sebagai AgCl. Dalam prosedur ini, NaCl adalah reagen pembatas dan AgNO₃ adalah reagen berlebih. Endapan AgCl dipisahkan dari larutan dengan filtrasi, dikeringkan, dan ditimbang. Dari massa AgCl yang diukur, kita dapat menghitung massa Cl menggunakan persentase berdasarkan massa Cl dalam AgCl. Karena jumlah Cl yang sama ini ada dalam sampel NaCl awal, kita dapat menghitung persentase berdasarkan massa Cl dalam NaCl. Gambar 4.20 menunjukkan bagaimana prosedur ini dilakukan.



Gambar 4.20 Langkah dasar untuk analisis gravimetri. (a) Suatu larutan yang mengandung jumlah NaCl yang diketahui dalam suatu gelas kimia. (b) Presipitasi AgCl pada penambahan larutan AgNO₃ dari silinder pengukur. Dalam reaksi ini, AgNO₃ adalah reagen berlebih dan NaCl adalah reagen pembatas. (c) Larutan yang mengandung endapan AgCl disaring melalui wadah cakram sintered preweighed, yang memungkinkan cairan (tetapi bukan endapan) lewat. Cawan kemudian dikeluarkan dari peralatan, dikeringkan dalam oven, dan ditimbang lagi. Perbedaan antara massa akhir dan massa wadah kosong memberikan massa endapan AgCl.

Analisis gravimetri adalah teknik yang sangat akurat, karena massa sampel dapat diukur secara akurat. Namun, prosedur ini hanya berlaku untuk reaksi yang selesai, atau memiliki persen hasil (yield) hampir 100 persen. Jadi, jika AgCl sedikit larut dan bukannya tidak larut, tidak mungkin untuk mengendapkan semua ion Cl⁻ dari larutan NaCl dan perhitungan selanjutnya akan salah.


Contoh 4.9 menunjukkan perhitungan yang terlibat dalam percobaan gravimetri.



Contoh 4.9

Sampel 0,5662 g senyawa ionik mengandung ion klorida dan ion logam yang tidak diketahui dilarutkan dalam air dan ditambahkan dengan AgNO₃ berlebih. Jika terbentuk endapan 1,0882 g AgCl, berapa persen massa Cl dalam senyawa awal?


Strategi

Kita diminta untuk menghitung persentase berdasarkan massa Cl dalam sampel yang tidak diketahui, yaitu
Satu-satunya sumber ion Cl⁻ adalah senyawa awal. Ion klorida ini akhirnya berakhir dalam endapan AgCl. Bisakah kita menghitung massa ion Cl⁻ jika kita mengetahui persentase berdasarkan massa Cl dalam AgCl?


Penyelesaian

Massa molar Cl dan AgCl masing-masing adalah 35,45 g dan 143,4 g. Oleh karena itu, persentase berdasarkan massa Cl dalam AgCl diberikan oleh
% Cl = 24,72%
Selanjutnya, kita menghitung massa Cl dalam 1,0882 g AgCl. Untuk melakukannya, kita mengonversi 24,72% menjadi 0,2472 dan menuliskan


massa Cl = 0,2472 x 1,0882 g = 0,2690 g

Karena senyawa awal juga mengandung jumlah ion Cl⁻ ini, persentase massa Cl dalam senyawa tersebut adalah



= 47,51 % 

Latihan

Sampel 0,3220 g senyawa ionik yang mengandung ion bromida (Br₂) dilarutkan dalam air dan ditambahkan dengan AgNO₃ berlebih. Jika massa endapan AgBr yang terbentuk adalah 0,6964 g, berapa persen massa Br dalam senyawa awal?


Perhatikan bahwa analisis gravimetri tidak menetapkan seluruh identitas yang tidak diketahui. Jadi, dalam Contoh 4.9 kita masih tidak mengetahui kation itu. Namun, mengetahui persen dari massa Cl sangat membantu kita untuk mempersempit kemungkinan. Karena tidak ada dua senyawa yang mengandung anion yang sama (atau kation) memiliki komposisi persen yang sama berdasarkan massa, perbandingan persen dengan massa yang diperoleh dari analisis gravimetri dengan yang dihitung dari serangkaian senyawa yang diketahui akan mengungkapkan identitas yang tidak diketahui.