Showing posts with label bab 4. Show all posts
Showing posts with label bab 4. Show all posts

Monday, January 21, 2019

Tugas 4


4.1 Larutan dalam air dari tiga senyawa ditunjukkan dalam gambar. Identifikasi setiap senyawa sebagai non-elektrolit, elektrolit lemah, dan elektrolit kuat!
4.2 Identifikasi masing-masing zat berikut ini sebagai elektrolit kuat, elektrolit lemah, atau nonelektrolit:
(a) H₂O
(b) KCl
(c) HNO₃
(d) CH₃COOH
(e) C₁₂H₂₂O₁₁

4.3 Arus listrik dapat melalui larutan elektrolit disebabkan oleh pergerakan
(a) elektron saja
(b) kation saja
(c) anion saja
(d) kation dan anion

4.4 Anda diberi senyawa X yang larut dalam air. Jelaskan bagaimana Anda akan menentukan apakah itu elektrolit atau nonelektrolit! Jika itu adalah elektrolit, bagaimana Anda menentukan apakah itu kuat atau lemah?

4.5 Dua larutan AgNO₃ dan NaCl dicampur. Manakah dari gambar berikut yang paling merepresentasi campuran?

4.6 Kelompokan senyawa berikut sebagai larut atau tidak larut dalam air:
(a) Ca₃(PO₄)₂
(b) Mn(OH)₂
(c) AgClO₃
(d) K₂S

4.7 Tuliskan persamaan ionik dan persamaan ionik bersih untuk reaksi berikut:
(a) AgNO₃(aq) + Na₂SO₄(aq) →
(b) BaCl₂(aq) + ZnSO₄(aq) →
(c) (NH₄)₂CO₃(aq) + CaCl₂(aq) →

4.8 Manakah dari proses berikut yang kemungkinan akan menghasilkan reaksi pengendapan?
(a) Mencampur larutan NaNO₃ dengan larutan CuSO₄
(b) Mencampur larutan BaCl₂ dengan larutan K₂SO₄
(c)Tuliskan persamaan ion bersih untuk reaksi pengendapannya!

4.9 Identifikasi masing-masing spesi berikut sebagai asam Brønsted, basa Brønsted, atau keduanya: (a) HI
(b) CH₃COO⁻
(c) H₂PO₄⁻
(d) HSO₄⁻

4.10 Setarakan persamaan berikut dan tulis persamaan ionik dan persamaan ionik bersih yang sesuai (jika sesuai):
(a) HBr (aq) + NH₃ (aq) →
(b) Ba(OH)₂ (aq) + H₃PO₄ (aq) →
(c) HClO₄ (aq) + Mg(OH)₂ (s) →

4.11 Untuk reaksi redoks lengkap yang diberikan di sini, (i) pecahka setiap reaksi menjadi setengah-reaksi; (ii) identifikasi zat pengoksidasi; (iii) identifikasi agen pereduksi.
(a) 2Sr + O₂ → 2SrO
(b) 2Li + H₂ → 2LiH
(c) 2Cs + Br₂ → 2CsBr
(d) 3Mg + N₂ → Mg₃N₂

4.12 Susun spesi berikut dalam urutan peningkatan bilangan oksidasi atom belerang:
(a) H₂S
(b) S₈
(c) H₂SO₄
(d) S²⁻
(e) HS⁻
(f) SO₂
(g) SO₃

4.13 Berikan bilangan oksidasi dari atom-atom yang digaris bawahi dalam molekul dan ion berikut: 
(a) ClF
(b) IF₇
(c) CH₄
(d) C₂H₂
(e) C₂H₄
(f ) K₂CrO₄
(g) K₂Cr₂O₇
(h) KMnO₄
(i) NaHCO₃
(j) Li
(k) NaIO₃
(l) KO
(m) PF₆⁻
(n) KAuCl₄

4.14 Tuliskan bilangan oksidasi untuk atom-atom yang digaris bawahi dalam molekul dan ion berikut: 
(a) Cs₂O
(b) CaI
(c) Al₂O₃
(d) H₃AsO₃
(e) TiO₂
( f) MoO₄²⁻
(g) PtCl₄²⁻
(h) PtCl₆²⁻
(i) SnF₂
(j) ClF₃
(k) SbF₆⁻

4.15 Asam nitrat adalah zat pengoksidasi yang kuat. Nyatakan yang mana dari spesi berikut ini yang paling mungkin dihasilkan jika asam nitrat bereaksi dengan zat pereduksi kuat seperti logam seng, dan jelaskan alasannya: N₂O, NO, NO₂, N₂O₄, N₂O₅, NH₄⁺.

4.16 Atas dasar pertimbangan bilangan oksidasi, salah satu oksida berikut tidak akan bereaksi dengan molekul oksigen: NO, N₂O, SO₂, SO₃, P₄O₆. Yang mana? Mengapa?

4.17 Klasifikasikan reaksi redoks berikut:
(a) 2H₂O₂ → 2H₂O + O₂
(b) Mg + 2AgNO₃ → Mg(NO₃)₂ + 2Ag
(c) NH₄NO₂ → N₂ + 2H₂O
(d) H₂ + Br₂ → 2HBr

4.18 Hitung massa KI dalam gram yang dibutuhkan untuk menyiapkan 5,00 x 10² mL larutannya dengan konsentrasi 2,80 M.

4.19 Berapa mol MgCl₂ yang ada dalam 60,0 mL larutan 0,100 M MgCl₂?

4.20 Hitung molaritas masing-masing larutan berikut:
(a) 29,0 g etanol (C₂H₅OH) dalam 545 mL larutan
(b) 15,4 g sukrosa (C₁₂H₂₂O₁₁) dalam 74,0 mL larutan
(c) 9,00 g natrium klorida (NaCl) dalam 86,4 mL larutan

4.21 Hitung volume dalam mL larutan yang diperlukan untuk memberikan:
(a) 2,14 g natrium klorida dari larutan 0,270 M
(b) 4,30 g etanol dari larutan 1,50 M
(c) 0,85 g asam asetat (CH₃COOH) dari larutan 0,30 M

4.22 Jelaskan cara menyiapkan 1,00 L dari larutan 0,646 M HCl, dimulai dengan larutan 2,00 M HCl.

4.23 Bagaimana Anda mempersiapkan 60,0 mL 0,200 M HNO₃ dari larutan stok 4,00 M HNO₃?

4.24 Suatu larutan 35,2 mL, 1,66 M KMnO₄ dicampur dengan 16,7 mL larutan 0,892 M KMnO₄. Hitung konsentrasi larutan akhir!

4.25 Jika 30,0 mL 0,150 M CaCl₂ ditambahkan ke 15,0 mL 0,100 M AgNO₃, berapakah massa dalam gram endapan AgCl?

4.26 Berapa gram NaCl yang dibutuhkan untuk mengendapkan sebagian besar ion Ag⁺ dari 2,50 x 10² mL larutan 0,0113 M AgNO₃? Tuliskan persamaan ion bersih untuk reaksi!

4.27 Sejumlah 18,68 mL larutan KOH diperlukan untuk menetralkan 0,4218 g KHP. Berapa konsentrasi (dalam molaritas) larutan KOH?

4.28 Hitung volume dalam mL larutan NaOH 1,420 M yang diperlukan untuk menditrasi larutan berikut:
(a) 25,00 mL larutan 2,430 M HCl
(b) 25,00 mL larutan 4,500 M H₂SO₄
(c) 25,00 mL larutan 1,500 M H₃PO₄

4.29 Besi (II) dapat dioksidasi dengan larutan asam K₂Cr₂O₇ menurut persamaan ion bersih:
Cr₂O₇²⁻ + 6Fe²⁺ + 14H⁺ → 2Cr³⁺ + 6Fe³⁺ + 7H₂O
Jika dibutuhkan 26,0 mL 0,0250 M K₂Cr₂O₇ untuk menditrasi 25,0 mL larutan yang mengandung Fe²⁺, berapakah konsentrasi molar Fe²⁺?

4.30 Sampel bijih besi (hanya mengandung ion Fe²⁺) dengan berat 0,2792 g dilarutkan dalam larutan asam encer, dan semua Fe (II) dikonversi menjadi ion Fe (III). Larutannya diperlukan 23,30 mL 0,0194 M K₂Cr₂O₇ untuk titrasi. Hitung persentase berdasarkan berat besi dalam bijih. (Petunjuk: Lihat Soal 4.91 untuk persamaan yang setara)

4.31 Asam oksalat (H₂C₂O₄) ada dalam banyak tanaman dan sayuran. Jika 24,0 mL larutan 0,0100 M KMnO₄ diperlukan untuk menditrasi 1,00 g sampel H₂C₂O₄ ke titik ekivalen, berapakah persentase massa H₂C₂O₄ dalam sampel? Persamaan ion bersih adalah
2MnO₄⁻ + 16H⁺ + 5C₂O₄²⁻ → 2Mn²⁺ + 10CO₂ + 8H₂O

4.32 Ion Iodat (IO₃⁻) mengoksidasi SO₃²⁻ dalam larutan asam. Setengah reaksi untuk oksidasi adalah
SO₃²⁻ + H₂O → SO₄²⁻ + 2H⁺ ⁺ 2e⁻ 
Sampel larutan 100,0 mL yang mengandung 1,390 g KIO₃ bereaksi dengan 32,5 mL 0,500 M Na₂SO₃. Bagaimana keadaan oksidasi akhir yodium setelah reaksi terjadi?

JAWABAN

Latihan 4

 

4.1 Definisikan yang dimaksud zat terlarut, pelarut dan larutan dengan menjelaskan proses melarutkan zat padat ke dalam cairan!

4.2 Apa perbedaan antara elektrolit dan nonelektrolit? Antara elektrolit lemah dan elektrolit kuat?

4.3 Jelaskan arti hidrasi. Sifat apa yang memungkinkan molekul air berinteraksi dengan ion dalam larutan?

4.4 Apa perbedaan antara simbol-simbol berikut dalam persamaan kimia: → dan ⇋?

4.5 Air adalah elektrolit yang sangat lemah dan karenanya tidak dapat menghantarkan listrik. Mengapa kita sering diperingatkan untuk tidak mengoperasikan peralatan listrik jika tangan kita basah?

4.6 Litium florida (LiF) adalah elektrolit yang kuat. Spesi apa yang ada dalam LiF(aq)?

4.7 Apa perbedaan antara persamaan ionik dan persamaan molekul?

4.8 Apa keuntungan dari menuliskan persamaan ionik bersih?

4.9 Sebutkan sifat umum larutan asam dan larutan basa!

4.10 Berikan definisi asam dan basa menurut Arrhenius dan menurut Brønsted! Mengapa definisi Brønsted lebih berguna dalam menggambarkan sifat asam-basa?

4.11 Berikan contoh asam monoprotik, asam diprotik, dan asam triprotik!

4.12 Apa sifat dari reaksi netralisasi asam-basa?

4.13 Faktor-faktor apa yang memenuhi syarat suatu senyawa sebagai garam? Tentukan senyawa mana yang merupakan garam: CH₄, NaF, NaOH, CaO, BaSO₄, HNO₃, NH₃, KBr?

4.14 Identifikasi spesi berikut sebagai asam kuat, asam lemah, basa lemah atau basa kuat:
(a) NH₃
(b) H₃PO₄
(c) LiOH
(d) HCOOH (asam format)
(e) H₂SO₄
(f) HF
(g) Ba(OH)₂

4.14 Berikan contoh reaksi redoks pembentukan, reaksi redoks penguraian, dan reaksi redoks substitusi!

4.15 Semua reaksi pembakaran adalah reaksi redoks. Benar atau salah? Jelaskan!

4.16 Apa yang dimaksud dengan bilangan oksidasi? Bagaimana bilangan ini digunakan untuk mengidentifikasi reaksi redoks? Jelaskan mengapa, kecuali untuk senyawa ionik, bilangan oksidasi tidak memiliki ciri-ciri fisik apa pun!

4.17 (a) Tanpa mengacu pada Gambar 4.11, berikan bilangan oksidasi logam alkali dan logam alkali tanah dalam senyawanya!
(b) Tuliskan bilangan oksidasi tertinggi yang dapat dimiliki oleh unsur Golongan IIIA-VIIA.

4.18 Bagaimana seri aktifitas disusun? Bagaimana seri ini digunakan dalam studi reaksi redoks?

4.19 Gunakan reaksi berikut untuk menentukan reaksi redoks, setengah reaksi, zat pengoksidasi, zat pereduksi:
4Na (s) + O₂ (g) → 2Na₂O (s)

4.20 Apakah mungkin untuk memiliki reaksi di mana oksidasi terjadi tetapi reduksi tidak terjadi? Jelaskan!

4.21 Apa persyaratan agar suatu unsur dapat mengalami reaksi disproporsionasi? Sebutkan beberapa unsur umum yang cenderung terlibat dalam reaksi tersebut!

4.22 Tulis persamaan untuk menghitung molaritas! Mengapa molaritas merupakan satuan konsentrasi yang nyaman digunakan dalam kimia?

4.23 Jelaskan langkah-langkah yang terlibat dalam menyiapkan larutan yang konsentrasi molarnya diketahui dengan menggunakan labu volumetrik!

4.24 Jelaskan langkah-langkah dasar yang terlibat dalam pengenceran larutan yang konsentrasinya diketahui!

4.25 Tulis persamaan yang memungkinkan kita menghitung konsentrasi larutan encer! Definsikan simbol dalam semua persamaan!

4.26 Jelaskan langkah-langkah dasar yang terlibat dalam analisis gravimetri! Bagaimana prosedur ini membantu kita menentukan identitas suatu senyawa atau kemurnian senyawa jika rumusnya diketahui?

4.27 Air suling harus digunakan dalam analisis gravimetri klorida. Mengapa?

4.28 Jelaskan langkah-langkah dasar yang terlibat dalam titrasi asam-basa! Mengapa teknik ini bernilai praktis?

4.29 Bagaimana cara kerja indikator asam-basa?

4.30 Seorang siswa melakukan dua titrasi menggunakan larutan NaOH dengan konsentrasi yang tidak diketahui dalam buret. Pada titrasi pertama dia menimbang 0,2458 g KHP (lihat bagian 4.7) dan memindahkannya ke Erlenmeyer. Dia kemudian menambahkan 20,00 mL air suling untuk melarutkan asam. Dalam titrasi kedua dia menimbang 0,2507 g KHP tetapi menambahkan 40,00 mL air suling untuk melarutkan asam. Dengan asumsi tidak ada kesalahan eksperimental, akankah ia memperoleh hasil yang sama untuk konsentrasi larutan NaOH? Jelaskan!

4.31 Apakah volume larutan NaOH 0,10 M yang dibutuhkan untuk titrasi 25,0 mL larutan 0,10 M HNO₂ (asam lemah) berbeda dari yang diperlukan untuk titrasi 25,0 mL larutan 0,10 M HCl (asam kuat)?

4.32 Apa persamaan dan perbedaan antara titrasi asam-basa dan titrasi redoks?

4.31 Jelaskan mengapa kalium permanganat (KMnO₄) dan kalium dikromat (K₂Cr₂O₇) dapat berfungsi sebagai indikator internal dalam titrasi redoks!

Kata Kunci 4


Agen pengoksidasi/Oksidator
Agen pereduksi/Reduktor
Analisis gravimetri
Analisis kuantitatif
Asam Brønsted
Asam diprotik
Asam monoprotik,
Asam triprotik
Basa Brønsted
Bilangan oksidasi
Elektrolit
Garam
Hidrasi
Indikator
Ion hidronium
Ion penonton
Keadaan oksidasi
Kelarutan
Konsentrasi larutan
Konsentrasi molar
Larutan
Larutan dalam air
Larutan standar
Molaritas (M)
Nonelektrolit
Pelarut
Pengenceran
Pengendapan
Persamaan ionik
Persamaan ionik bersih
Persamaan molekul
Reaksi disproporsionasi
Reaksi kombinasi/Pembentukan
Reaksi metatesis
Reaksi netralisasi
Reaksi oksidasi
Reaksi pembakaran
Reaksi penguraian
Reaksi perpindahan/substitusi
Reaksi presipitasi/pengendapan
Reaksi redoks
Reaksi reduksi
Reaksi reduksi oksidasi
Reaksi yang dapat dibalik
Seri aktivitas
Setengah reaksi
Titik ekivalen
Titrasi
Zat terlarut

Ringkasan Pengetahuan Faktual dan Konseptual 4


  1. Larutan encer menghantarkan listrik jika zat terlarutnya adalah elektrolit. Jika zat terlarutnya adalah nonelektrolit, maka larutannya tidak menghantarkan listrik.
  2. Tiga kategori utama dari reaksi kimia yang terjadi di larutan dalam air adalah reaksi presipitasi, reaksi asam-basa, dan reaksi reduksi oksidasi.
  3. Dari aturan umum tentang kelarutan senyawa ion, kita dapat memprediksi apakah endapan akan terbentuk dalam suatu reaksi.
  4. Asam Arrhenius terionisasi dalam air menghasilkan ion H⁺, dan basa Arrhenius terionisasi dalam air untuk menghasilkan ion OH⁻. Asam Brønsted menyumbangkan proton, dan basa Brønsted menerima proton.
  5. Reaksi asam kuat dan basa kuat disebut reaksi netralisasi.
  6. Dalam reaksi redoks, oksidasi dan reduksi selalu terjadi secara bersamaan. Oksidasi ditandai dengan lepasnya elektron, reduksi ditandai penerimaan elektron.
  7. Bilangan oksidasi membantu kita melacak distribusi muatan dan dikenakan pada semua atom dalam suatu senyawa atau ion sesuai dengan aturan tertentu. Oksidasi dapat didefinisikan sebagai peningkatan bilangan oksidasi; reduksi dapat didefinisikan sebagai penurunan bilangan oksidasi.
  8. Banyak reaksi redoks dapat disubklasifikasi sebagai reaksi pembentukan, penguraian, pembakaran, perpindahan (substitusi), atau reaksi disproporsionasi.
  9. Konsentrasi larutan adalah jumlah zat terlarut yang ada dalam jumlah larutan yang diberikan. Molaritas menyatakan konsentrasi sebagai jumlah mol zat terlarut dalam 1 L larutan.
  10. Menambahkan pelarut ke dalam larutan, suatu proses yang dikenal sebagai pengenceran, menurunkan konsentrasi (molaritas) larutan tanpa mengubah jumlah mol zat terlarut yang ada dalam larutan.
  11. Analisis gravimetri adalah teknik untuk menentukan identitas suatu senyawa dan / atau konsentrasi larutan dengan mengukur massa. Eksperimen gravimetri sering melibatkan reaksi presipitasi.
  12. Dalam titrasi asam-basa, konsentrasi larutan yang diketahui (katakanlah, basa) ditambahkan secara bertahap pada larutan yang konsentrasi belum diketahui (katakanlah, asam) dengan tujuan menentukan konsentrasi larutan yang belum diketahui. Titik di mana reaksi dalam titrasi selesai, seperti yang ditunjukkan oleh perubahan warna indikator, disebut titik ekivalen.
  13. Titrasi redoks mirip dengan titrasi asam-basa. Titik di mana reaksi reduksi oksidasi selesai disebut titik ekivalen.

Rumus Penting 4


Rumus yang harus diingat adalah

Logam Dari Laut

Magnesium adalah logam ringan dan berharga yang digunakan sebagai bahan struktural serta dalam paduan, baterai, dan sintesis kimia. Meskipun magnesium berlimpah di kerak bumi, lebih murah untuk “menambang” logam dari air laut. Magnesium membentuk kation paling melimpah kedua di laut (setelah natrium); ada sekitar 1,3 g magnesium dalam satu kilogram air laut. Proses untuk mendapatkan magnesium dari air laut menggunakan ketiga jenis reaksi yang dibahas dalam bab ini: reaksi presipitasi, asam-basa, dan redoks.

Breathalyzer (alat yang digunakan oleh polisi untuk mengukur kadar alkohol dalam napas pengemudi)

Setiap tahun di Amerika Serikat sekitar 25.000 orang tewas dan 500.000 lainnya terluka akibat mengemudi dalam keadaan mabuk. Terlepas dari upaya untuk mengedukasi masyarakat tentang bahaya mengemudi saat mabuk dan hukuman lebih berat untuk pelanggaran mengemudi dalam keadaan mabuk, agen penegak hukum masih harus mencurahkan banyak pekerjaan untuk mengeluarkan pengemudi mabuk dari jalan Amerika.

4.8 Titrasi Redoks

Seperti disebutkan sebelumnya, reaksi redoks melibatkan transfer elektron, dan reaksi asam-basa melibatkan transfer proton. Sama seperti asam yang dapat dititrasi terhadap basa, kita dapat menditrasi zat pengoksidasi terhadap zat pereduksi, menggunakan prosedur yang serupa. Kita dapat secara hati-hati menambahkan larutan yang mengandung zat pengoksidasi ke dalam larutan yang mengandung zat pereduksi. Titik ekivalen tercapai ketika zat pereduksi sepenuhnya dioksidasi oleh zat pengoksidasi.


Seperti halnya titrasi asam-basa, titrasi redoks biasanya membutuhkan indikator yang berubah warna dengan jelas. Bersama sejumlah besar zat pereduksi, warna indikator adalah khas untuk zat yang tereduksi. Indikator mengasumsikan warna terbentuk ketika zat teroksidasi hadir dalam media pengoksidasi. Pada atau di dekat titik ekivalen, perubahan tajam dalam warna indikator akan terjadi karena perubahan dari satu bentuk ke yang lain, sehingga titik ekivalen dapat dengan mudah diidentifikasi.



Dua zat pengoksidasi yang umum adalah kalium permanganat (KMnO₄) dan kalium dikromat (K₂Cr₂O₇). Seperti yang ditunjukkan Gambar 4.22, warna-warna anion permanganat dan dikromat berbeda dengan warna dari spesi yang tereduksi:


Gambar 4.22 Kiri ke kanan: Larutan yang mengandung ion MnO₄⁻, Mn²⁺, Cr₂O₇²⁻, dan Cr³⁺.

Dengan demikian, zat pengoksidasi ini sendiri dapat digunakan sebagai indikator internal dalam titrasi redoks karena mereka memiliki warna yang sangat berbeda dalam bentuk teroksidasi dan tereduksi.

Titrasi redoks memerlukan jenis perhitungan yang sama (berdasarkan metode mol) seperti netralisasi asam-basa. Perbedaannya adalah bahwa persamaan dan stoikiometri cenderung lebih kompleks untuk reaksi redoks. Berikut ini adalah contoh titrasi redoks.

Contoh 4.12
Diperlukan 16,42 mL volume  larutan KMnO₄ 0,1327 M untuk mengoksidasi 25,00 mL larutan FeSO₄ dalam media asam. Berapa konsentrasi larutan FeSO₄ dalam molaritas? Persamaan ionik bersih adalah

5Fe²⁺ + MnO₄⁻ + 8H⁺  Mn²⁺ + 5Fe³⁺ + 4H₂O

Strategi

Kita ingin menghitung molaritas dari larutan FeSO₄. Dari definisi molaritas
Volume larutan FeSO₄ diberikan dalam soal. Oleh karena itu, kita perlu menemukan jumlah mol FeSO₄ untuk dipecahkan menjadi molaritas. Dari persamaan ion bersih, berapakah kesetaraan stoikiometrik antara Fe²⁺ dan MnO₄⁻? Berapa mol KMnO₄ yang terkandung dalam 16,42 mL larutan 0,1327 M KMnO₄?

Penyelesaian
Jumlah mol KMnO₄ dalam 16,42 mL larutan adalah
Jumlah mol KMnO₄ dalam 16,42 mL larutan adalah Dari persamaan ion bersih kita melihat bahwa 5 mol Fe²⁺ 1 mol MnO₄⁻. Oleh karena itu, jumlah mol FeSO₄ teroksidasi adalah
Konsentrasi larutan FeSO₄ dalam mol FeSO₄ per liter larutan adalah

Latihan
Berapa mililiter larutan 0,206 M HI diperlukan untuk mereduksi 22,5 mL larutan 0,374 M KMnO₄ sesuai dengan persamaan berikut:
10HI + 2KMnO₄ + 3H₂SO₄ → 5I₂ + 2MnSO₄ + K₂SO₄ + 8H₂O

4.7 Titrasi Asam Basa

Studi kuantitatif reaksi netralisasi asam-basa paling mudah dilakukan dengan menggunakan teknik yang dikenal sebagai titrasi. Dalam titrasi, konsentrasi larutan diketahui secara akurat, yang disebut larutan standar, ditambahkan secara bertahap ke larutan lain dengan konsentrasi yang tidak diketahui, sampai reaksi kimia antara kedua larutan selesai. Jika kita mengetahui volume larutan standar dan larutan yang tidak diketahui yang digunakan dalam titrasi, bersama dengan konsentrasi larutan standar, kita dapat menghitung konsentrasi larutan yang tidak diketahui tersebut.


Natrium hidroksida adalah salah satu pangkalan yang biasa digunakan di laboratorium. Namun, sulit untuk mendapatkan natrium hidroksida padat dalam bentuk murni karena memiliki kecenderungan untuk menyerap air dari udara, dan larutannya bereaksi dengan karbon dioksida. Untuk alasan ini, larutan natrium hidroksida harus distandarisasi sebelum dapat digunakan dalam pekerjaan analitik yang akurat. Kita dapat menstandarkan larutan natrium hidroksida dengan menditrasi larutan asam dengan konsentrasi yang diketahui secara akurat. Asam yang sering dipilih untuk tugas ini adalah asam monoprotik yang disebut kalium hidrogen ptalat (KHP), di mana rumus molekulnya adalah KHC₈H₄O₄ (massa molar = 204,2 g). KHP adalah padatan putih yang dapat larut yang tersedia secara komersial dalam bentuk sangat murni. Reaksi antara KHP dan natrium hidroksida adalah



KHC₈H₄O₄(aq) + NaOH(aq) → KNaC₈H₄O₄(aq) + H₂O(l)

dan persamaan ion bersihnya adalah


HC₈H₄O₄⁻(aq) + OH⁻(aq) → C₈H₄O₄²⁻(aq) + H₂O(l)

Prosedur untuk titrasi ditunjukkan pada Gambar 4.21. Pertama, jumlah KHP yang diketahui dipindahkan ke Erlenmeyer dan beberapa air suling ditambahkan untuk membuat larutan. Selanjutnya, larutan NaOH ditambahkan dengan hati-hati ke larutan KHP dari buret sampai kita mencapai titik ekivalen, yaitu titik di mana asam telah sepenuhnya bereaksi dengan atau dinetralkan oleh basa. Titik ekivalen biasanya ditandai oleh perubahan tajam dalam warna indikator dalam larutan asam. Dalam titrasi asam-basa, indikator adalah zat yang memiliki warna berbeda secara jelas dalam media asam dan basa. Salah satu indikator yang umum digunakan adalah fenolftalein, yang tidak berwarna dalam larutan asam dan netral tetapi merah muda kemerahan dalam larutan dasar. Pada titik ekivalen, semua KHP telah dinetralkan oleh NaOH yang ditambahkan dan larutan masih tidak berwarna. Namun, jika kita menambahkan hanya satu tetes lagi larutan NaOH dari buret, larutannya akan segera menjadi merah muda karena larutannya sekarang basa. Contoh 4.10 menggambarkan titrasi semacam itu.


Gambar 4.21 (a) Peralatan untuk titrasi asam-basa. Larutan NaOH ditambahkan dari buret ke larutan KHP dalam labu Erlenmeyer. (b) Warna merah muda kemerahan muncul ketika titik ekivalen tercapai. Warna di sini telah diintensifkan untuk tampilan visual.

Contoh 4.10
Dalam percobaan titrasi, seorang siswa menemukan bahwa 23,48 mL larutan NaOH diperlukan untuk menetralkan 0,5468 g KHP. Berapa konsentrasi (dalam molaritas) larutan NaOH?


Strategi

Kita ingin menentukan molaritas larutan NaOH. Apa definisi molaritas?
 
Volume larutan NaOH diberikan dalam soal. Oleh karena itu, kita perlu menemukan jumlah mol NaOH untuk dipecahkan untuk molaritas. Dari persamaan sebelumnya untuk reaksi antara KHP dan NaOH yang ditunjukkan dalam teks kita melihat bahwa 1 mol KHP menetralkan 1 mol NaOH. Berapa mol KHP yang terkandung dalam 0,5468 g KHP?


Penyelesaian

Pertama, kita menghitung jumlah mol KHP yang dikonsumsi dalam titrasi:

= 2,678 x 10⁻³ mol KHP


Karena 1 mol KHP ∞ 1 mol NaOH, harus ada 2,678 x 10⁻³ mol NaOH dalam 23,48 mL larutan NaOH. Akhirnya, kita menghitung jumlah mol NaOH dalam 1 L larutan atau molaritas sebagai berikut:

Latihan
Berapa gram KHP yang dibutuhkan untuk menetralkan 18,64 mL larutan 0,1004 M NaOH?

Reaksi netralisasi antara NaOH dan KHP adalah salah satu jenis netralisasi asam-basa paling sederhana yang diketahui. Namun, seandainya, alih-alih KHP, kita ingin menggunakan asam diprotik seperti H₂SO₄ untuk titrasi. Reaksi diwakili oleh

2NaOH(aq) + H₂SO₄(aq) → Na₂SO₄(aq) + 2H₂O(l)

Karena 2 mol NaOH ∞ 1 mol H₂SO₄, kita membutuhkan NaOH dua kali lebih banyak untuk bereaksi sepenuhnya dengan larutan H₂SO₄ dengan konsentrasi dan volume molar yang sama dengan asam monoprotik seperti HCl. Di sisi lain, kita akan membutuhkan dua kali jumlah HCl untuk menetralkan larutan Ba(OH)₂ dibandingkan dengan larutan NaOH yang memiliki konsentrasi dan volume yang sama karena 1 mol Ba(OH)₂ menghasilkan 2 mol ion OH⁻:

2HCl(aq) + Ba(OH)₂(aq) → BaCl₂(aq) + 2H₂O(l)

Dalam perhitungan yang melibatkan titrasi asam basa, terlepas dari asam atau basa yang terbentuk dalam reaksi, perlu diingat bahwa jumlah total mol ion H⁺ yang bereaksi pada titik ekivalen harus sama dengan jumlah total mol ion OH⁻ yang bereaksi.

Contoh 4.11 menunjukkan titrasi larutan NaOH dengan asam diprotik.

Contoh 4.11
Berapa mililiter (mL) larutan NaOH 0,610 M yang dibutuhkan untuk menetralkan 20,0 mL larutan 0,245 M H₂SO₄?


Strategi

Kita ingin menghitung volume larutan NaOH. Dari definisi molaritas [lihat Persamaan (4.1)], kita menulis
Dari persamaan untuk reaksi netralisasi yang baru saja ditunjukkan, kita melihat bahwa 1 mol H₂SO₄ menetralkan 2 mol NaOH. Berapa mol H₂SO₄ yang terkandung dalam 20,0 mL larutan 0,245 M H₂SO₄? Berapa mol NaOH yang akan dinetralkan oleh kuantitas H₂SO₄ ini?


Penyelesaian
Pertama-tama kita menghitung jumlah mol H₂SO₄ dalam larutan 20,0 mL:
Dari stoikiometri kita melihat bahwa 1 mol H₂SO₄ ∞ 2 mol NaOH. Oleh karena itu, jumlah mol NaOH yang direaksikan harus 2 x 4,90 x 10⁻³ mol, atau 9,80 x 10⁻³ mol. Dari definisi molaritas [lihat Persamaan (4.1)], kita miliki
atau

Latihan
Berapa mililiter larutan 1,28 M H₂SO₄ yang dibutuhkan untuk menetralkan 60,2 mL larutan 0,427 M KOH?

Ulasan Konsep
Larutan NaOH pada awalnya dicampur dengan larutan asam yang ditunjukkan pada (a). Manakah dari diagram yang ditunjukkan pada (b) - (d) sesuai dengan salah satu dari asam berikut: HCl, H₂SO₄, H₃PO₄? Kode warna: Bola biru (ion OH⁻); bola merah (molekul asam); bola hijau (anion dari asam). Asumsikan semua reaksi netralisasi asam-basa berjalan sempurna.


4.6 Analisis Gravimetri

Analisis gravimetri adalah teknik analitik berdasarkan pengukuran massa. Salah satu jenis eksperimen analisis gravimetri melibatkan pembentukan, isolasi, dan penentuan massa endapan. Secara umum, prosedur ini diterapkan pada senyawa ionik. Pertama, zat sampel dengan komposisi yang tidak diketahui dilarutkan dalam air dan dibiarkan bereaksi dengan zat lain membentuk endapan. Kemudian endapan disaring, dikeringkan, dan ditimbang. Mengetahui massa dan rumus kimia dari endapan yang terbentuk, kita dapat menghitung massa komponen kimia tertentu (yaitu, anion atau kation) dari sampel awal. Akhirnya, dari massa komponen dan massa sampel awal, kita dapat menentukan persentase komposisi berdasarkan massa komponen dalam senyawa awal.

Reaksi yang sering dipelajari dalam analisis gravimetri, karena reaktan dapat diperoleh dalam bentuk murni, adalah



AgNO₃(aq) + NaCl(aq) → NaNO₃(aq) + AgCl(s)

Persamaan ion bersihnya adalah


Ag⁺(aq) + Cl⁻(aq) → AgCl(s)

Endapannya adalah perak klorida (lihat Tabel 4.2). Sebagai contoh, katakanlah kita ingin menentukan secara eksperimen persentase berdasarkan massa Cl dalam NaCl. Pertama, kita akan menimbang sampel NaCl secara akurat dan melarutkannya dalam air. Selanjutnya, kita akan menambahkan larutan AgNO₃ yang cukup ke dalam larutan NaCl untuk menyebabkan pengendapan semua ion Cl⁻ yang ada dalam larutan sebagai AgCl. Dalam prosedur ini, NaCl adalah reagen pembatas dan AgNO₃ adalah reagen berlebih. Endapan AgCl dipisahkan dari larutan dengan filtrasi, dikeringkan, dan ditimbang. Dari massa AgCl yang diukur, kita dapat menghitung massa Cl menggunakan persentase berdasarkan massa Cl dalam AgCl. Karena jumlah Cl yang sama ini ada dalam sampel NaCl awal, kita dapat menghitung persentase berdasarkan massa Cl dalam NaCl. Gambar 4.20 menunjukkan bagaimana prosedur ini dilakukan.



Gambar 4.20 Langkah dasar untuk analisis gravimetri. (a) Suatu larutan yang mengandung jumlah NaCl yang diketahui dalam suatu gelas kimia. (b) Presipitasi AgCl pada penambahan larutan AgNO₃ dari silinder pengukur. Dalam reaksi ini, AgNO₃ adalah reagen berlebih dan NaCl adalah reagen pembatas. (c) Larutan yang mengandung endapan AgCl disaring melalui wadah cakram sintered preweighed, yang memungkinkan cairan (tetapi bukan endapan) lewat. Cawan kemudian dikeluarkan dari peralatan, dikeringkan dalam oven, dan ditimbang lagi. Perbedaan antara massa akhir dan massa wadah kosong memberikan massa endapan AgCl.

Analisis gravimetri adalah teknik yang sangat akurat, karena massa sampel dapat diukur secara akurat. Namun, prosedur ini hanya berlaku untuk reaksi yang selesai, atau memiliki persen hasil (yield) hampir 100 persen. Jadi, jika AgCl sedikit larut dan bukannya tidak larut, tidak mungkin untuk mengendapkan semua ion Cl⁻ dari larutan NaCl dan perhitungan selanjutnya akan salah.


Contoh 4.9 menunjukkan perhitungan yang terlibat dalam percobaan gravimetri.



Contoh 4.9

Sampel 0,5662 g senyawa ionik mengandung ion klorida dan ion logam yang tidak diketahui dilarutkan dalam air dan ditambahkan dengan AgNO₃ berlebih. Jika terbentuk endapan 1,0882 g AgCl, berapa persen massa Cl dalam senyawa awal?


Strategi

Kita diminta untuk menghitung persentase berdasarkan massa Cl dalam sampel yang tidak diketahui, yaitu
Satu-satunya sumber ion Cl⁻ adalah senyawa awal. Ion klorida ini akhirnya berakhir dalam endapan AgCl. Bisakah kita menghitung massa ion Cl⁻ jika kita mengetahui persentase berdasarkan massa Cl dalam AgCl?


Penyelesaian

Massa molar Cl dan AgCl masing-masing adalah 35,45 g dan 143,4 g. Oleh karena itu, persentase berdasarkan massa Cl dalam AgCl diberikan oleh
% Cl = 24,72%
Selanjutnya, kita menghitung massa Cl dalam 1,0882 g AgCl. Untuk melakukannya, kita mengonversi 24,72% menjadi 0,2472 dan menuliskan


massa Cl = 0,2472 x 1,0882 g = 0,2690 g

Karena senyawa awal juga mengandung jumlah ion Cl⁻ ini, persentase massa Cl dalam senyawa tersebut adalah



= 47,51 % 

Latihan

Sampel 0,3220 g senyawa ionik yang mengandung ion bromida (Br₂) dilarutkan dalam air dan ditambahkan dengan AgNO₃ berlebih. Jika massa endapan AgBr yang terbentuk adalah 0,6964 g, berapa persen massa Br dalam senyawa awal?


Perhatikan bahwa analisis gravimetri tidak menetapkan seluruh identitas yang tidak diketahui. Jadi, dalam Contoh 4.9 kita masih tidak mengetahui kation itu. Namun, mengetahui persen dari massa Cl sangat membantu kita untuk mempersempit kemungkinan. Karena tidak ada dua senyawa yang mengandung anion yang sama (atau kation) memiliki komposisi persen yang sama berdasarkan massa, perbandingan persen dengan massa yang diperoleh dari analisis gravimetri dengan yang dihitung dari serangkaian senyawa yang diketahui akan mengungkapkan identitas yang tidak diketahui.

4.5 Konsentrasi Larutan

Untuk mempelajari stoikiometri larutan, kita harus tahu berapa banyak reaktan yang ada dalam larutan dan juga bagaimana mengontrol jumlah reaktan yang digunakan untuk menghasilkan reaksi dalam larutan berair.

Konsentrasi larutan adalah jumlah zat terlarut yang ada dalam jumlah pelarut tertentu, atau jumlah larutan tertentu. (Untuk diskusi ini, kita akan menganggap zat terlarut adalah cairan atau padatan dan pelarut adalah air) Konsentrasi larutan dapat dinyatakan dalam berbagai cara, seperti yang akan kita lihat di Bab 12. Di sini kita akan membahas satu satuan yang paling umum digunakan dalam kimia, yaitu molaritas (M), atau konsentrasi molar, yang merupakan jumlah mol zat terlarut per liter larutan. Molaritas didefinisikan sebagai

Persamaan (4.1) juga dapat dinyatakan secara aljabar
di mana n menunjukkan jumlah mol zat terlarut dan V adalah volume larutan dalam liter.

Larutan 1,46 molar glukosa (C₆H₁₂O₆), ditulis sebagai 1,46 M C₆H₁₂O₆, mengandung 1,46 mol zat terlarut (C₆H₁₂O₆) dalam 1 L larutan. Tentu saja, kita tidak selalu bekerja dengan volume larutan 1 L. Dengan demikian, larutan 500 mL yang mengandung 0,730 mol C₆H₁₂O₆ juga memiliki konsentrasi 1,46 M:

Perhatikan bahwa konsentrasi, seperti kepadatan, adalah sifat yang intensif, sehingga nilainya tidak tergantung pada berapa banyak larutan yang ada.

Penting untuk diingat bahwa molaritas hanya mengacu pada jumlah zat terlarut yang semula terlarut dalam air dan tidak memperhitungkan proses selanjutnya, seperti pemisahan garam atau ionisasi asam. Perhatikan apa yang terjadi ketika sampel kalium klorida (KCl) dilarutkan dalam air yang cukup untuk membuat larutan 1 M:

Karena KCl adalah elektrolit yang kuat, KCl mengalami disosiasi sempurna dalam larutan. Dengan demikian, larutan 1 M KCl mengandung 1 mol ion K⁺ dan 1 mol ion Cl⁻, dan tidak ada molekul KCl yang tetap eksis. Konsentrasi ion dapat dinyatakan sebagai [K⁺] = 1 M dan [Cl⁻] = 1 M, di mana tanda kurung siku [ ] menunjukkan bahwa konsentrasi dinyatakan dalam molaritas. Demikian pula, dalam larutan 1 M barium nitrat [Ba(NO₃)₂]
kami memiliki [Ba²⁺] = 1 M dan [NO₃⁻] = 2 M dan tidak ada molekul Ba(NO₃)₂ sama sekali.

Prosedur untuk menyiapkan larutan molaritas yang diketahui adalah sebagai berikut. Pertama, zat terlarut secara akurat ditimbang dan dipindahkan ke labu volumetrik melalui corong (Gambar 4.18). Selanjutnya, air ditambahkan ke labu, yang diaduk dengan hati-hati untuk melarutkan padatan. Setelah semua padatan larut, lebih banyak air ditambahkan perlahan sampai tingkat larutan tepat ke tanda tera volume. Mengetahui volume larutan dalam labu dan jumlah senyawa (jumlah mol) yang dilarutkan, kita dapat menghitung molaritas larutan menggunakan Persamaan (4.1). Perhatikan bahwa prosedur ini tidak perlu mengetahui jumlah air yang ditambahkan, selama volume larutan akhir diketahui.



Gambar 4.18 Mempersiapkan larutan molaritas yang diketahui. (a) Sejumlah zat terlarut padat yang diketahui dipindahkan ke dalam labu volumetrik; Kemudian air ditambahkan melalui corong. (b) Padatan perlahan dilarutkan dengan lembut memutar labu dengan cara digoyang. (c) Setelah padatan benar-benar larut, lebih banyak air ditambahkan sampai tanda tera volume. Mengetahui volume larutan dan jumlah zat terlarut di dalamnya, kita dapat menghitung molaritas larutan yang disiapkan.

Contoh 4.6 dan 4.7 mengilustrasikan aplikasi Persamaan (4.1) dan (4.2).

Contoh 4.6

Berapa gram kalium dikromat (K₂Cr₂O₇) yang diperlukan untuk membuat larutan 250 mL yang konsentrasinya adalah 2,16 M?

Strategi 
Berapa banyak mol K₂Cr₂O₇ yang terdapat dalam 1L (atau 1000 mL) 2,16 M larutan K₂Cr₂O₇? larutan 250 mL? Bagaimana kita mengonversi mol menjadi gram?


Penyelesaian

Langkah pertama adalah menentukan jumlah mol K₂Cr₂O₇ dalam 250 mL atau 0,250 L larutan 2,16 M K₂Cr₂O₇. Menyusun ulang Persamaan (4.1) memberi


mol zat terlarut = molaritas x Liter larutan

sehingga

Massa molar K₂Cr₂O₇ adalah 294,2 g, jadi kita menulis

Periksa
Sebagai perkiraan pembulatan, massa harus diberikan oleh [molaritas (mol/L) x volume (L) x massa molar (g/mol)] atau [2 mol/L x 0,25 L x 300g/mol] = 150 g. Jadi jawabannya masuk akal.

Latihan
Berapa volume (dalam mililiter) larutan NaOH 0,315 M yang mengandung 6,22 g NaOH?


Pengenceran Larutan
Larutan konsentrasi pekat sering disimpan di ruang stok laboratorium untuk digunakan sesuai kebutuhan. Kita sering mengencerkan larutan "stok" ini sebelum bekerja dengannya. Pengenceran adalah prosedur untuk menyiapkan larutan yang kurang pekat dari larutan yang lebih pekat.

Misalkan kita ingin menyiapkan 1 L larutan 0,400 M KMnO₄ dari larutan 1,00 M KMnO₄. Untuk keperluan ini, kita membutuhkan 0,400 mol KMnO₄. Karena ada 1,00 mol KMnO₄ dalam 1L dari larutan 1,00 M KMnO₄, ada 0,400 mol KMnO₄ dalam 0,400 L dari larutan yang sama:
Oleh karena itu, kita harus menarik 400 mL dari larutan 1,00 M KMnO₄ dan mengencerkannya menjadi 1000 mL dengan menambahkan air (dalam labu volumetrik 1L). Metode ini memberi kita 1 L larutan yang diinginkan dari 0,400 M KMnO₄.

Dalam melakukan proses pengenceran, penting untuk diingat bahwa menambahkan lebih banyak pelarut ke sejumlah larutan stok mengubah (mengurangi) konsentrasi larutan tanpa mengubah jumlah mol zat terlarut yang ada dalam larutan (Gambar 4.19). Dengan kata lain,

mol zat terlarut sebelum pengenceran = mol zat terlarut setelah pengenceran

Molaritas didefinisikan sebagai mol zat terlarut dalam satu liter larutan, sehingga jumlah mol zat terlarut diberikan oleh [lihat Persamaan (4.2)]
Karena semua zat terlarut berasal dari larutan stok asal, kita dapat menyimpulkan bahwa n tetap sama; karena itu,

M₁V₁ = M₂V₂
awal         akhir

di mana M₁ dan M₂ adalah konsentrasi awal dan akhir dari larutan dalam molaritas dan V₁ dan V₂ adalah volume awal dan akhir dari larutan, masing-masing. Tentu saja, satuan V₁ dan V₂ harus sama (mL atau L) agar kalkulasi bekerja. Untuk memeriksa kewajaran hasil, kita pastikan bahwa M₁ > M₂ dan V₂ > V₁.

Kita menerapkan Persamaan (4.3) dalam Contoh 4.8.

Contoh 4.8
Jelaskan bagaimana kita akan menyiapkan 5,00 x 10² mL larutan 1,75 M H₂SO₄, dimulai dengan larutan stok H₂SO₄ 8,61 M!


Strategi
Karena konsentrasi larutan akhir kurang dari yang awal, ini adalah proses pengenceran. Ingatlah bahwa dalam pengenceran, konsentrasi larutan menurun tetapi jumlah mol zat terlarut tetap sama.

Penyelesaian
Kita mempersiapkan perhitungan dengan mentabulasi data:

M₁ = 8,61 M         M₂ = 1,75 M
V₁ = ?                    V₂ = 5,00 x 10² mL

Jadi, kita harus mengencerkan 102 mL larutan 8,61M H₂SO₄ dengan air yang cukup untuk menghasilkan volume akhir 5,00 x 10² mL dalam labu volumetrik 500 mL untuk memperoleh konsentrasi larutan yang diinginkan.

Periksa
Volume awal kurang dari volume akhir, jadi jawabannya masuk akal.

Latihan
Bagaimana kita menyiapkan 2,00 x 10² mL larutan 0,866 M NaOH, dimulai dengan larutan stok 5,07 M?


Ulasan Konsep
Berapa konsentrasi akhir larutan NaCl 0,6 M jika volumenya dua kali lipat dan jumlah mol zat terlarut tiga kali lipat?

Sekarang kita telah membahas konsentrasi dan pengenceran larutan, kita dapat memeriksa aspek kuantitatif dari reaksi dalam larutan berair, atau stoikiometri larutan. Bagian 4.6–4.8 fokus pada dua teknik untuk mempelajari stoikiometri larutan: analisis dan titrasi gravimetri. Teknik-teknik ini adalah alat penting dari analisis kuantitatif, yang merupakan penentuan jumlah atau konsentrasi suatu zat dalam sampel.

4.4 Reaksi Oksidasi-Reduksi

Reaksi asam-basa dapat dicirikan sebagai proses transfer proton, sedangkan golongan reaksi yang disebut oksidasi-reduksi, atau reaksi redoks, reaksi ini dianggap sebagai reaksi transfer-elektron. Reaksi reduksi oksidasi sangat banyak menjadi bagian dari dunia di sekitar kita. Mulai dari pembakaran bahan bakar fosil hingga aksi pemutih rumah tangga. Selain itu, sebagian besar unsur logam dan nonlogam diperoleh dari bijihnya dengan proses oksidasi atau reduksi.

Banyak reaksi redoks terjadi di dalam air, tetapi tidak semua reaksi redoks terjadi dalam larutan berair. Kita memulai diskusi dengan reaksi dua unsur yang bergabung membentuk senyawa. Perhatikan pembentukan senyawa magnesium oksida (MgO) dari magnesium dan oksigen (Gambar 4.9):


2Mg(s) + O₂(g) → 2MgO(s)


Gambar 4.9 Magnesium dibakar dengan oksigen membentuk magnesium oksida

Magnesium oksida (MgO) adalah senyawa ionik yang tersusun dari ion Mg²⁺ dan O²⁻. Dalam reaksi ini, dua atom Mg melepaskan atau mentransfer empat elektron kepada dua atom O (dalam O₂). Untuk memudahkan, kita dapat menganggap proses ini sebagai dua langkah terpisah, pertama melibatkan lepasnya empat elektron dari dua atom Mg dan selanjutnya adalah penerimaan empat elektron oleh molekul O₂:


2Mg → 2Mg²⁺ + 4e⁻
O₂ + 4e⁻ → 2O²⁻

Masing-masing langkah ini disebut setengah reaksi, yang secara eksplisit menunjukkan elektron yang terlibat dalam reaksi redoks. Jumlah dari setengah reaksi memberikan reaksi keseluruhan:

2Mg + O₂ + 4e⁻ →  2Mg²⁺ + 2O²⁻ + 4e⁻

atau, jika kita menghilangkan elektron yang muncul di kedua sisi persamaan,

2Mg + O₂ →  2Mg²⁺ + 2O²⁻

Akhirnya, ion Mg²⁺ dan O²⁻ bergabung membentuk MgO:

2Mg²⁺ + 2O²⁻ →  2MgO.

Istilah reaksi oksidasi mengacu pada setengah reaksi yang melibatkan lepasnya elektron. Kimiawan awalnya menggunakan "oksidasi" untuk menunjukkan kombinasi unsur dengan oksigen. Namun, sekarang memiliki makna yang lebih luas yang mencakup reaksi yang tidak melibatkan oksigen. Reaksi reduksi adalah setengah reaksi yang melibatkan penambahan elektron. Dalam pembentukan magnesium oksida, magnesium dioksidasi. Magnesium dikatakan bertindak sebagai agen pereduksi (reduktor) karena menyumbangkan elektron ke oksigen dan menyebabkan oksigen direduksi. Oksigen direduksi dan bertindak sebagai agen pengoksidasi (oksidator) karena oksigen menerima elektron dari magnesium, menyebabkan magnesium teroksidasi. Perhatikan bahwa tingkat oksidasi dalam reaksi redoks harus sama dengan tingkat reduksi; yaitu, jumlah elektron yang dilepas oleh zat pereduksi harus sama dengan jumlah elektron yang diterima oleh zat pengoksidasi.

Terjadinya transfer elektron lebih jelas dalam beberapa reaksi redoks daripada yang lain. Ketika seng logam ditambahkan ke dalam larutan yang mengandung tembaga (II) sulfat (CuSO₄), seng mereduksi Cu²⁺ dengan menyumbangkan dua elektron ke dalamnya:

Zn(s) + CuSO₄(aq) → ZnSO₄(aq) + Cu(s)

Dalam prosesnya, larutannya kehilangan warna biru yang menjadi ciri keberadaan ion Cu²⁺ terhidrasi (Gambar 4.10):

Zn(s) + Cu²⁺(aq) → Zn²⁺(aq) + Cu(s)

Setengah reaksi oksidasi dan reduksinya adalah

Zn → Zn²⁺ + 2e⁻
Cu²⁺ + 2e⁻ → Cu

Demikian pula, logam tembaga mereduksi ion perak dalam larutan perak nitrat (AgNO₃):

Cu(s) + 2AgNO₃(aq) → Cu(NO₃)₂(aq) + 2Ag(s)

atau

Cu(s) + 2Ag⁺(aq) → Cu²⁺(aq) + 2Ag(s)

Bilangan Oksidasi (Biloks)
Definisi reduksi dan oksidasi dalam hal melepas dan menerima elektron berlaku untuk pembentukan senyawa ionik seperti MgO dan reduksi ion Cu²⁺ oleh Zn. Namun, definisi ini tidak secara akurat mengkarakterisasi pembentukan hidrogen klorida (HCl) dan belerang dioksida (SO₂):

H₂(g) + Cl₂(g) → 2HCl(g)
S(s) + O₂(g) → SO₂(g)

Karena HCl dan SO₂ bukan senyawa ionik tetapi molekul, tidak ada elektron yang benar-benar ditransfer dalam pembentukan senyawa ini, seperti pada MgO. Namun demikian, para ahli kimia menemukan bahwa reaksi ini adalah reaksi redoks karena pengukuran secara eksperimen menunjukkan bahwa terdapat transfer sebagian elektron (dari H ke Cl dalam HCl dan dari S ke O dalam SO₂).

Untuk melacak elektron dalam reaksi redoks, penting untuk menetapkan bilangan oksidasi untuk reaktan dan produk. Bilangan oksidasi atom, juga disebut keadaan oksidasi, menandakan jumlah muatan yang dimiliki atom dalam molekul (atau senyawa ionik) jika elektron ditransfer sepenuhnya. Sebagai contoh, kita dapat menulis ulang persamaan sebelumnya untuk pembentukan HCl dan SO₂ sebagai berikut:


Angka-angka di atas simbol unsur adalah bilangan oksidasi. Dalam kedua reaksi yang ditunjukkan, tidak ada muatan pada atom dalam molekul reaktan. Jadi, bilangan oksidasi molekul adalah nol. Untuk molekul produk, bagaimanapun, diasumsikan bahwa transfer elektron lengkap telah terjadi dan atom telah melepas atau menerima elektron. Bilangan oksidasi mencerminkan jumlah elektron yang "ditransfer".


Gambar 4.10 Reaksi perpindahan logam dalam larutan. (a) Gelas pertama: Sebuah seng ditempatkan dalam larutan CuSO₄ biru. Segera ion Cu²⁺ direduksi menjadi logam Cu dalam bentuk lapisan gelap. Gelas kedua: Pada waktunya, sebagian besar ion Cu²⁺ direduksi dan larutan menjadi tidak berwarna. (b) Gelas pertama: Sepotong kawat Cu ditempatkan dalam larutan AgNO₃ yang tidak berwarna. Ion Ag⁺ direduksi menjadi logam Ag. Gelas kedua: Seiring berjalannya waktu, sebagian besar ion Ag⁺ direduksi dan larutan memperoleh warna biru yang khas karena adanya ion Cu²⁺ terhidrasi.

Bilangan oksidasi memungkinkan kita untuk mengidentifikasi unsur yang teroksidasi dan direduksi secara cepat. Unsur-unsur yang menunjukkan peningkatan bilangan oksidasi — hidrogen dan belerang dalam contoh-contoh sebelumnya — dioksidasi. Klorin dan oksigen direduksi, sehingga bilangan oksidasi menunjukkan penurunan dari nilai awalnya. Perhatikan bahwa jumlah bilangan oksidasi H dan Cl dalam HCl (+1 dan -1) adalah nol. Demikian juga, jika kita menambahkan muatan pada S (+4) dan dua atom O [2 x (2-)], totalnya adalah nol. Alasannya adalah bahwa molekul HCl dan SO₂ netral, sehingga muatan harus dihilangkan.

Kita menggunakan aturan berikut untuk menetapkan bilangan oksidasi:

  1. Dalam unsur bebas (yaitu, dalam keadaan tidak terkombinasi), setiap atom memiliki bilangan oksidasi nol. Jadi, setiap atom dalam H₂, Br₂, Na, Be, K, O₂, dan P₄ memiliki bilangan oksidasi yang sama: yaitu nol.
  2. Untuk ion yang hanya terdiri dari satu atom (yaitu, ion monatomik), bilangan oksidasi sama dengan muatan pada ion. Jadi, ion Li⁺ memiliki bilangan oksidasi +1; Ion Ba²⁺, +2; Ion Fe³⁺, +3; Ion I⁻, -1; Ion O²⁻, -2; dan seterusnya. Semua logam alkali memiliki bilangan oksidasi +1 dan semua logam alkali tanah memiliki bilangan oksidasi +2 dalam senyawanya. Aluminium memiliki bilangan oksidasi +3 dalam semua senyawanya.
  3. Bilangan oksidasi oksigen dalam sebagian besar senyawa (misalnya, MgO dan H₂O) adalah -2, tetapi dalam hidrogen peroksida (H₂O₂) dan ion peroksida (O₂²⁻), adalah -1.
  4. Bilangan oksidasi hidrogen adalah +1, kecuali ketika terikat pada logam dalam senyawa biner. Dalam kasus ini (misalnya, LiH, NaH, CaH₂), bilangan oksidasinya adalah -1.
  5. Fluorin memiliki bilangan oksidasi -1 dalam semua senyawanya. Halogen lain (Cl, Br, dan I) memiliki bilangan oksidasi negatif ketika mereka muncul sebagai ion halida dalam senyawanya. Ketika dikombinasikan dengan oksigen — misalnya dalam asam okso dan anion okso (lihat Bagian 2.7) —halida memiliki bilangan oksidasi positif.
  6. Dalam molekul netral, jumlah bilangan oksidasi semua atom harus nol. Dalam ion poliatomik, jumlah bilangan oksidasi semua unsur dalam ion harus sama dengan muatan bersih ion. Misalnya, dalam ion amonium (NH₄⁺) bilangan oksidasi N adalah -3 dan H adalah +1. Jadi jumlah bilangan oksidasi adalah -3 + 4 (+1) = +1, yang sama dengan muatan bersih dari ion.
  7. Bilangan oksidasi tidak harus bilangan bulat. Misalnya, bilangan oksidasi O dalam ion superoksida, O₂⁻, adalah -½.

Kita menerapkan aturan sebelumnya untuk menetapkan bilangan oksidasi dalam Contoh 4.4.


Contoh 4.4

Tetapkan bilangan oksidasi untuk semua unsur dalam senyawa dan ion berikut ini: (a) Li₂O, (b) HNO₃, (c) Cr₂O₇²⁻.


Strategi 

Secara umum, kita mengikuti aturan yang baru saja dicatat untuk menetapkan bilangan oksidasi. Ingat bahwa semua logam alkali memiliki bilangan oksidasi +1, dan dalam banyak kasus hidrogen memiliki bilangan oksidasi +1 dan oksigen memiliki bilangan oksidasi -2 dalam senyawanya.


Penyelesaian 

(a) Berdasarkan aturan 2 kita melihat bahwa litium memiliki bilangan oksidasi +1 (Li⁺) dan bilangan oksidasi oksigen adalah -2 (O²⁻).


(b) Ini adalah rumus untuk asam nitrat, yang menghasilkan ion H⁺ dan ion NO₃⁻ dalam larutan. Dari aturan 4 kita melihat bahwa H memiliki bilangan oksidasi +1. Dengan demikian gugus lain (ion nitrat) harus memiliki bilangan oksidasi bersih -1. Oksigen memiliki bilangan oksidasi -2, dan jika kita menggunakan x untuk mewakili bilangan oksidasi nitrogen, maka ion nitrat dapat ditulis sebagai


[N⁽ˣ⁾O₃⁽²⁻⁾]⁻

sehingga  
x + 3(-2) = -1

atau
x = +5

(c) Dari aturan 6 kita melihat bahwa jumlah bilangan oksidasi dalam ion dikromat Cr₂O₇²⁻ harus -2. Kita tahu bahwa bilangan oksidasi O adalah -2, jadi yang tersisa hanyalah menentukan bilangan oksidasi Cr, yang kita misalkan disebut y. Ion dikromat dapat ditulis sebagai
sehingga
2(y) + 7(-2) = -2
atau
y = +6

Periksa 
Dalam setiap kasus, apakah jumlah bilangan oksidasi semua atom sama dengan muatan bersih pada spesi?

Latihan
Tetapkan bilangan oksidasi untuk semua unsur dalam senyawa dan ion berikut ini: (a) PF₃, (b) MnO₄⁻.

Gambar 4.11 menunjukkan bilangan oksidasi yang diketahui dari unsur-unsur yang dikenal, diatur sesuai dengan posisinya di tabel periodik. Kita dapat meringkas isi gambar ini sebagai berikut:

  • Unsur logam hanya memiliki bilangan oksidasi positif, sedangkan unsur bukan logam dapat memiliki bilangan oksidasi positif atau negatif.
  • Bilangan oksidasi tertinggi yang dimiliki unsur dalam Golongan 1A-7A adalah nomor golongannya. Sebagai contoh, halogen berada di Golongan 7A, jadi bilangan oksidasi tertinggi yang mungkin adalah +7.
  • Logam transisi (Golongan 1B, 3B-8B) biasanya memiliki beberapa kemungkinan bilangan oksidasi.

Gambar 4.11 Bilangan oksidasi unsur dalam senyawanya. Bilangan oksidasi yang lebih umum berwarna merah.

Jenis-jenis Reaksi Redoks
Di antara reaksi reduksi oksidasi yang paling umum adalah reaksi pembentukan (kombinasi), penguraian (dekomposisi), pembakaran, dan perpindahan (substitusi). Satu jenis yang juga terlibat disebut reaksi disproporsionasi, yang juga akan dibahas dalam bagian ini.

Reaksi Pembentukan (Kombinasi) 
Reaksi pembentukan adalah reaksi di mana dua atau lebih zat bergabung membentuk produk tunggal. Gambar 4.12 menunjukkan beberapa reaksi kombinasi. Sebagai contoh,


Gambar 4.12 Beberapa reaksi redoks kombinasi sederhana. (a) Belerang terbakar di udara membentuk belerang dioksida. (b) Pembakaran natrium dalam klorin membentuk natrium klorida. (c) Aluminium bereaksi dengan bromin membentuk aluminium bromida.

Reaksi Penguraian (dekomposisi)
Reaksi penguraian adalah kebalikan dari reaksi pembentukan (kombinasi). Secara khusus, reaksi dekomposisi adalah penguraian senyawa menjadi dua atau lebih komponen (Gambar 4.13). Sebagai contoh,


Gambar 4.13 (a) Pada pemanasan, merkuri (II) oksida (HgO) terurai membentuk merkuri dan oksigen. (b) Pemanasan kalium klorat (KClO₃) menghasilkan oksigen, yang mendukung pembakaran bilah kayu.

Reaksi pembakaran
Reaksi pembakaran adalah reaksi di mana suatu zat bereaksi dengan oksigen, biasanya dengan melepaskan panas dan cahaya menghasilkan api. Reaksi antara magnesium dan sulfur dengan oksigen yang dijelaskan sebelumnya adalah reaksi pembakaran. Contoh lain adalah pembakaran propana (C₃H₈), komponen gas alam yang digunakan untuk pemanasan dan memasak rumah tangga:


C₃H₈(g) + 5O₂(g) → 3CO₂(g) + 4H₂O(l)

Pengaturan bilangan oksidasi atom C dalam senyawa organik lebih banyak terlibat. Di sini, kita hanya fokus pada bilangan oksidasi atom O, yang berubah dari 0 menjadi -2.


Reaksi Perpindahan (substitusi)
Dalam reaksi substitusi (perpindahan), ion (atau atom) dalam suatu senyawa digantikan oleh ion (atau atom) unsur lain: Sebagian besar reaksi perpindahan masuk ke dalam salah satu dari tiga subkategori: perpindahan hidrogen, perpindahan logam, atau perpindahan halogen.

1. Perpindahan Hidrogen. 

Semua logam alkali dan beberapa logam alkali tanah (Ca, Sr, dan Ba), yang merupakan unsur logam paling reaktif, akan menggantikan hidrogen dari air dingin (Gambar 4.14):




Gambar 4.14 Reaksi (a) natrium (Na) dan (b) kalsium (Ca) dengan air dingin. Perhatikan bahwa reaksinya lebih kuat dengan Na daripada dengan Ca.

Banyak logam, termasuk yang tidak bereaksi dengan air, mampu menggantikan hidrogen dari asam. Misalnya, seng (Zn) dan magnesium (Mg) tidak bereaksi dengan air dingin tetapi bereaksi dengan asam klorida, sebagai berikut:




Gambar 4.15 menunjukkan reaksi antara asam klorida (HCl) dan besi (Fe), seng (Zn), dan magnesium (Mg). Reaksi-reaksi ini digunakan untuk menyiapkan gas hidrogen di laboratorium.



Gambar 4.15 Reaksi (a) besi (Fe), (b) seng (Zn), dan (c) magnesium (Mg) dengan asam hidroklorida membentuk gas hidrogen dan logam klorida (FeCl₂ ZnCl₂, MgCl₂). Reaktivitas logam-logam ini tercermin dalam laju pembentukan gas hidrogen, yang paling lambat untuk logam yang paling tidak reaktif, Fe, dan tercepat untuk logam yang paling reaktif, Mg.

2. Perpindahan Logam.
Suatu logam dalam suatu senyawa dapat digantikan oleh logam lain dalam keadaan unsur. Kita telah melihat contoh-contoh seng menggantikan ion tembaga dan tembaga menggantikan ion perak. Membalikkan peran logam tidak akan menghasilkan reaksi. Dengan demikian, logam tembaga tidak akan menggantikan ion seng dari seng sulfat, dan logam perak tidak akan menggantikan ion tembaga dari tembaga nitrat.

Cara mudah untuk memprediksi apakah reaksi substitusi logam atau hidrogen akan benar-benar terjadi adalah dengan merujuk pada seri aktivitas (kadang-kadang disebut seri elektrokimia), ditunjukkan pada Gambar 4.16. Pada dasarnya, seri aktivitas adalah ringkasan yang mudah dari hasil dari banyak kemungkinan reaksi perpindahan yang serupa dengan yang telah dibahas. Menurut seri ini, setiap logam di atas hidrogen akan memindahkannya dari air atau dari asam, tetapi logam di bawah hidrogen tidak akan bereaksi dengan air atau asam. Faktanya, setiap logam yang terdaftar dalam seri aktivitas akan bereaksi dengan logam apa saja (dalam senyawa) di bawahnya. Misalnya, Zn berada di atas Cu, sehingga logam seng akan menggantikan ion tembaga dari tembaga sulfat.



Gambar 4.16 Seri aktivitas untuk logam. Logam-logam tersebut diatur sesuai dengan kemampuannya untuk menggantikan hidrogen dari asam atau air. Li (litium) adalah logam yang paling reaktif, dan Au (emas) adalah yang paling tidak reaktif.

Reaksi substitusi logam menemukan banyak aplikasi dalam proses metalurgi, yang tujuannya adalah untuk memisahkan logam murni dari bijihnya. Sebagai contoh, vanadium diperoleh dengan memperlakukan vanadium (V) oksida dengan logam kalsium :


V₂O₅(s) + 5Ca(l) → 2V(l) + 5CaO(s)

Demikian pula, titanium diperoleh dari titanium (IV) klorida sesuai dengan reaksi

TiCl₄(g) + 2Mg(l) → Ti(s) + 2MgCl₂(l)

Dalam setiap kasus, logam yang bertindak sebagai zat pereduksi terletak di atas logam yang direduksi (yaitu, Ca di atas V dan Mg di atas Ti) dalam seri aktivitas. Kita akan melihat lebih banyak contoh dari jenis reaksi ini di Bab 19.

3. Substitusi Halogen.
Seri aktivitas lainnya yang merangkum perilaku halogen dalam reaksi perpindahan halogen:


F₂ > Cl₂ > Br₂ > I₂

Kekuatan unsur-unsur ini sebagai zat pengoksidasi berkurang jika kita mengurutkan Golongan 7A dari florin ke iodin, sehingga molekul florin dapat menggantikan ion klorida, bromida, dan iodida dalam larutan. Faktanya, molekul fluor sangat reaktif sehingga juga menyerang air; dengan demikian reaksi ini tidak dapat dilakukan dalam larutan berair. Di sisi lain, molekul klorin dapat menggantikan ion bromida dan iodida dalam larutan berair. Persamaan substitusi adalah



Persamaan ionik adalah



Molekul bromin, pada gilirannya, dapat menggantikan ion iodida dalam larutan:




Membalikkan peran halogen tidak menghasilkan reaksi. Dengan demikian, brom tidak dapat menggantikan ion klorida, dan yodium tidak dapat menggantikan ion bromida dan klorida.


Reaksi perpindahan halogen memiliki aplikasi industri langsung. Halogen sebagai suatu gugus adalah yang paling reaktif dari unsur-unsur bukan logam. Semua halogen adalah agen pengoksidasi kuat. Akibatnya, halogen ditemukan di alam dalam keadaan gabungan (dengan logam) sebagai halida dan tidak pernah sebagai unsur bebas. Dari keempat unsur ini, klorin sejauh ini merupakan bahan kimia industri yang paling penting. Pada tahun 2008 jumlah klorin yang diproduksi di Amerika Serikat adalah sekitar 25 miliar pound, menjadikan klorin sebagai bahan kimia industri peringkat kesepuluh. Produksi tahunan bromin hanya seperseratus dari klorin, sementara jumlah florin dan iodin yang dihasilkan bahkan lebih sedikit.


Memulihkan halogen dari halida mereka membutuhkan proses oksidasi, yang diwakili oleh



2X⁻ → X₂ + 2e⁻

di mana X menunjukkan unsur halogen. Air laut dan air asin alami (misalnya, air bawah tanah yang bersentuhan dengan endapan garam) adalah sumber yang kaya akan ion Cl₂, Br₂, dan I₂. Mineral seperti florit (CaF₂) dan kriolit (Na₃AlF₆) digunakan untuk membuat florin. Karena florin adalah zat pengoksidasi terkuat yang diketahui, tidak ada cara untuk mengubah ion F⁻ menjadi F₂ dengan cara kimia. Satu-satunya cara untuk melakukan oksidasi adalah dengan cara elektrolitik, yang rinciannya akan dibahas pada Bab 19. Secara industri, klorin, seperti florin, diproduksi secara elektrolitik.


Bromin dibuat secara industri dengan mengoksidasi ion Br₂ dengan klor, yang merupakan agen pengoksidasi yang cukup kuat untuk mengoksidasi ion Br₂ tetapi bukan air:



2Br⁻(aq) → Br₂(l) + 2e⁻

Salah satu sumber terkaya ion Br₂ adalah Laut Mati — sekitar 4000 bagian per juta (ppm) berdasarkan massa semua zat terlarut di Laut Mati adalah Br. Setelah oksidasi ion Br₂, brom dihilangkan dari larutan dengan meniupkan udara ke atas larutan, dan campuran udara-bromin kemudian didinginkan untuk memadatkan bromin (Gambar 4.17).



Yodium juga dibuat dari air laut dan air garam alami oleh oksidasi ion I₂ dengan klorin. Karena ion Br₂ dan I₂ selalu ada di sumber yang sama, keduanya teroksidasi oleh klorin. Namun, relatif mudah untuk memisahkan Br₂ dari I₂ karena yodium adalah padatan yang sedikit larut dalam air. Prosedur peniupan udara akan menghilangkan sebagian besar bromin yang terbentuk tetapi tidak akan memengaruhi kehadiran yodium.


Gambar 4.17 Pembuatan industri brom (cairan merah berasap) dengan mengoksidasi larutan berair yang mengandung ion Br₂ dengan gas klor.

Reaksi disproporsionasi

Jenis reaksi redoks yang khusus adalah reaksi disproporsionasi. Dalam reaksi disproporsionasi, suatu unsur dalam satu keadaan oksidasi secara bersamaan dioksidasi dan direduksi. Satu reaktan dalam reaksi disproporsionasi selalu mengandung unsur yang dapat memiliki setidaknya tiga keadaan oksidasi. Unsur itu sendiri dalam keadaan oksidasi menengah; yaitu, tingkat oksidasi yang lebih tinggi dan lebih rendah ada untuk unsur tersebut dalam produk. Dekomposisi hidrogen peroksida adalah contoh dari reaksi disproporsionasi:

Di sini bilangan oksidasi oksigen dalam reaktan (-1) meningkat menjadi nol pada O₂ dan menurun menjadi -2 pada H₂O. Contoh lain adalah reaksi antara molekul klorin dan larutan NaOH:

Reaksi ini menjelaskan pembentukan zat pemutih rumah tangga, karena ion hipoklorit (ClO₂) yang mengoksidasi zat pembawa warna dalam noda, mengubahnya menjadi senyawa tidak berwarna.

Akhirnya, menarik untuk membandingkan reaksi redoks dan reaksi asam-basa. Keduanya analog dengan reaksi asam-basa yang melibatkan transfer proton sedangkan reaksi redoks melibatkan transfer elektron. Namun, sementara reaksi asam basa cukup mudah dikenali (karena selalu melibatkan asam dan basa), tidak ada prosedur sederhana untuk mengidentifikasi proses redoks. Satu-satunya cara yang pasti adalah membandingkan bilangan oksidasi dari semua unsur dalam reaktan dan produk. Setiap perubahan dalam bilangan oksidasi menjamin bahwa reaksi tersebut bersifat redoks.


Klasifikasi berbagai jenis reaksi redoks diilustrasikan dalam Contoh 4.5.


Contoh 4.5
Klasifikasikan reaksi redoks berikut dan tunjukkan perubahan dalam bilangan oksidasi unsur:

(a) 2N₂O(g) → 2N₂(g) + O₂(g)
(b) 6Li(s) + N₂(g)  2Li₃N(s)
(c) Ni(s) + Pb(NO₃)₂(aq)  Pb(s) + Ni(NO₃)₂(aq)

(d) 2NO₂(g) + H₂O(l)  HNO₂(aq) + HNO₃(aq)

Strategi 
Tinjau definisi reaksi pembentukan, reaksi penguraian, reaksi pembakaran, reaksi perpindahan, dan reaksi disproporsionasi.

Penyelesaian

(a) Ini adalah reaksi penguraian karena satu reaktan diubah menjadi dua produk yang berbeda. Bilangan oksidasi N berubah dari +1 menjadi 0, sedangkan O berubah dari -2 menjadi 0.
(b) Ini adalah reaksi pembentukan (dua reaktan membentuk produk tunggal). Bilangan oksidasi Li berubah dari 0 menjadi +1 sedangkan N berubah dari 0 menjadi -3.
(c) Ini adalah reaksi perpindahan logam. Logam Ni menggantikan (mereduksi) ion Pb²⁺. Bilangan oksidasi Ni meningkat dari 0 menjadi +2 sedangkan Pb menurun dari +2 menjadi 0.

(d) Bilangan oksidasi N adalah +4 dalam NO₂ dan +3 dalam HNO₂ dan +5 dalam HNO₃. Karena bilangan oksidasi dari unsur yang sama meningkat dan menurun, ini adalah reaksi disproporsionasi.


Latihan

Identifikasi reaksi redoks berikut berdasarkan jenisnya:
(a) Fe + H₂SO₄ → FeSO₄ + H₂
(b) S + 3F₂  SF₆
(c) 2CuCl  Cu + CuCl₂
(d) 2Ag + PtCl₂  2AgCl + Pt

Ulasan Konsep
Manakah dari reaksi pembentukan berikut ini yang bukan reaksi redoks?
(a) 2Mg(s) + O₂(g)  2MgO(s)
(b) H₂(g) + F₂(g)  2HF(g)
(c) NH₃(g) + HCl(g)  NH₄Cl(s)
(d) 2Na(s) + S(s)  Na₂S(s)