Showing posts with label bab 7. Show all posts
Showing posts with label bab 7. Show all posts

Tuesday, January 22, 2019

Ujian Akhir Semester I


Kerjakan Pada Laman Jawaban Yang Tersedia

Tugas 7


(a) Berapa frekuensi cahaya yang memiliki panjang gelombang 456 nm? (b) Berapakah panjang gelombang (dalam nanometer) radiasi yang memiliki frekuensi 2,45 3 10 9 Hz? (Ini adalah jenis radiasi yang digunakan dalam oven microwave.)

Latihan 7


7.1 Apa itu gelombang? Jelaskan istilah berikut yang terkait dengan gelombang: panjang gelombang, frekuensi, amplitudo.

Kata Kunci 7

Seri aktinida
Amplitudo
Orbital atom
Prinsip Aufbau

Ringkasan Pengetahuan Faktual dan Konseptual 7



  1. Teori kuantum yang dikembangkan oleh Planck berhasil menjelaskan emisi radiasi oleh zat padat yang dipanaskan. Teori kuantum menyatakan bahwa energi radiasi dipancarkan oleh atom dan molekul dalam jumlah diskrit kecil (kuanta), bukan pada rentang kontinu. Perilaku ini diatur oleh hubungan E = h𝜈, di mana E adalah energi radiasi, h adalah konstanta Planck, dan 𝜈 adalah frekuensi radiasi. Energi selalu dipancarkan dalam kelipatan h𝜈 seluruh nomor (1h𝜈, 2h𝜈, 3h𝜈, ...).
  2. Menggunakan teori kuantum, Einstein memecahkan misteri fisika lain — efek fotolistrik. Einstein mengusulkan bahwa cahaya dapat berperilaku seperti aliran partikel (foton).
  3. Spektrum garis hidrogen, misteri lain untuk Fisikawan abad kesembilan belas, juga dipertimbangkan dengan menggunakan teori kuantum. Bohr mengembangkan model atom hidrogen di mana energi elektron tunggalnya terkuantisasi - terbatas pada kepastian tertentu yang ditentukan oleh energi bilangan bulat, prinsipal bilangan kuantum.
  4. Sebuah elektron dalam keadaan energinya yang paling stabil dikatakan berada dalam keadaan dasar, dan elektron pada tingkat energi yang lebih tinggi dari keadaan paling stabil dikatakan dalam keadaan tereksitasi. Dalam model Bohr, elektron memancarkan foton ketika jatuh dari keadaan berenergi lebih tinggi (keadaan tereksitasi) ke keadaan berenergi lebih rendah (keadaan dasar atau keadaan lain, keadaan kurang tereksitasi). Pelepasan jumlah energi tertentu dalam bentuk foton bertanggung jawab atas garis-garis dalam spektrum emisi hidrogen.
  5. De Broglie memperluas deskripsi gelombang-partikel Einstein tentang cahaya untuk semua materi yang bergerak. Panjang gelombang partikel yang bergerak dari massa m dan kecepatan u diberikan oleh persamaan de Broglie 𝝀 = h/mu.
  6. Persamaan SchrΓΆdinger menggambarkan gerakan dan energi partikel submikroskopik. Persamaan ini meluncurkan mekanika kuantum dan era baru dalam fisika.
  7. Persamaan SchrΓΆdinger memberi tahu kita keadaan energi elektron yang mungkin dalam atom hidrogen dan kemungkinan lokasinya di wilayah tertentu yang mengelilingi inti. Hasil ini dapat diterapkan dengan akurasi yang masuk akal untuk atom berelektron banyak.
  8. Orbital atom adalah fungsi (πœ“) yang mendefinisikan distribusi kerapatan elektron (πœ“²) dalam ruang. Orbit diwakili oleh diagram kerapatan elektron atau diagram batas permukaan.
  9. Empat bilangan kuantum mencirikan setiap elektron dalam atom: bilangan kuantum utama n mengidentifikasi tingkat energi utama, atau kulit, dari orbital; bilangan kuantum momentum sudut  π“ menunjukkan bentuk orbital; bilangan kuantum magnetik mβ„“ menentukan orientasi orbital dalam ruang; dan bilangan kuantum spin elektron ms menunjukkan arah putaran elektron pada porosnya sendiri.
  10. Orbital tunggal untuk setiap tingkat energi berbentuk bola dan berpusat pada inti. Tiga orbital p berada pada n = 2 dan lebih tinggi; masing-masing memiliki dua lobus, dan pasangan lobus disusun pada sudut yang tepat satu sama lain. Dimulai dengan n = 3, terdapat lima orbital, dengan bentuk dan orientasi yang lebih kompleks.
  11. Energi elektron dalam atom hidrogen ditentukan semata-mata oleh bilangan kuantum utamanya. Dalam atom berelektron banyak, bilangan kuantum utama dan bilangan kuantum momentum sudut bersama-sama menentukan energi elektron.
  12. Tidak ada dua elektron dalam atom yang sama dapat memiliki empat bilangan kuantum yang sama (prinsip pengecualian Pauli).
  13. Susunan elektron yang paling stabil dalam sebuah subkulit adalah yang memiliki jumlah putaran paralel terbanyak (aturan Hund). Atom dengan satu atau lebih spin elektron tidak berpasangan adalah paramagnetik. Atom-atom di mana semua elektron berpasangan diamagnetik.
  14. Prinsip Aufbau memberikan pedoman untuk membangun unsur. Tabel periodik mengklasifikasikan unsur berdasarkan nomor atomnya dan juga oleh konfigurasi elektronik atomnya.




Rumus Penting 7


(7.1) Menghubungkan kecepatan gelombang dengan panjang gelombang dan frekuensinya.
(7.2) Menghubungkan energi kuantum (dan foton) dengan frekuensi.
(7.3) Menghubungkan energi kuantum (dan foton) dengan panjang gelombang.
(7.4) Efek fotolistrik.
(7.5) Energi elektron dalam keadaan ke-n dalam atom hidrogen.
(7.6) Energi foton diserap atau dipancarkan ketika elektron mengalami transisi dari tingkat ni ke tingkat nf.
(7.8) Menghubungkan panjang gelombang suatu partikel dengan massa m dan kecepatannya 𝜈.
(7.9) Menghitung ketidakpastian dalam posisi atau dalam momentum suatu partikel.

Mikroskop Elektron

Mikroskop elektron adalah aplikasi yang sangat berharga dari sifat mirip elektron karena menghasilkan gambar objek yang tidak dapat dilihat dengan mata telanjang atau dengan mikroskop cahaya. Menurut hukum optik, tidak mungkin untuk membentuk gambar dari objek yang lebih kecil dari setengah panjang gelombang cahaya yang digunakan untuk pengamatan. Karena kisaran panjang gelombang cahaya tampak mulai sekitar 400 nm, atau 4 3 10 25 cm, kita tidak dapat melihat apa pun yang lebih kecil dari 2 3 10 25 cm. Pada prinsipnya, kita dapat melihat objek pada skala atom dan molekul dengan menggunakan sinar X, yang panjang gelombangnya berkisar antara 0,01 nm hingga 10 nm. Namun, sinar X tidak dapat difokuskan, sehingga mereka tidak menghasilkan gambar yang terbentuk dengan baik. Elektron, di sisi lain, adalah partikel bermuatan, yang dapat difokuskan dengan cara yang sama dengan gambar pada layar TV difokuskan, yaitu dengan menerapkan medan listrik atau medan magnet. Menurut Persamaan (7.8), panjang gelombang elektron berbanding terbalik dengan kecepatannya. Dengan mempercepat elektron ke kecepatan sangat tinggi, kita dapat memperoleh panjang gelombang sesingkat 0,004 nm.

Laser - Cahaya Luar Biasa

Laser adalah akronim untuk penguatan cahaya dengan stimulasi emisi radiasi. Ini adalah jenis emisi khusus yang melibatkan atom atau molekul. Sejak ditemukannya laser pada tahun 1960, laser telah digunakan dalam berbagai sistem yang dirancang untuk beroperasi dalam keadaan gas, cairan, dan padat. Sistem ini memancarkan

7.9 Prinsip Aufbau Pengisian Elektron

Di sini kita akan memperluas aturan yang digunakan dalam menulis konfigurasi elektron untuk 10 unsur pertama sampai seluruh unsur. Proses ini didasarkan pada prinsip Aufbau. Prinsip Aufbau menyatakan bahwa ketika proton ditambahkan satu per satu ke dalam inti untuk membangun unsur, elektron juga ditambahkan ke orbital atom. Melalui proses ini, kita memperoleh pengetahuan terperinci tentang konfigurasi elektron unsur dasar di bumi. Seperti yang akan kita pelajari nanti, pengetahuan konfigurasi elektron membantu kita untuk memahami dan memprediksi sifat-sifat unsur; hal itu juga menjelaskan mengapa tabel periodik bekerja dengan sangat baik.

Tabel 7.3 memberikan konfigurasi unsur-unsur elektron keadaan-dasar dari H (Z = 1) hingga Rg (Z = 111). Konfigurasi elektron semua unsur kecuali hidrogen dan helium diwakili oleh inti gas mulia, yang menunjukkan dalam kurung unsur gas mulia yang hampir mendahului unsur yang sedang dipertimbangkan, diikuti oleh simbol untuk subkulit berlapis tertinggi di kulit terluar. Perhatikan bahwa konfigurasi elektron dari subkulit berlapis tertinggi di kulit terluar untuk unsur-unsur natrium (Z=11) melalui argon (Z=18) mengikuti pola yang mirip dengan yang dari lithium (Z = 3) melalui neon (Z = 10).

Seperti disebutkan dalam Bagian 7.7, subkulit 4s diisi sebelum subkulit 3d dalam atom banyak elektron (lihat Gambar 7.24). Dengan demikian, konfigurasi elektron kalium (Z = 19) adalah 1s²2s²2p⁶3s²3p⁶4s¹. Karena 1s²2s²2p⁶3s²3p⁶ adalah konfigurasi elektron argon, kita dapat menyederhanakan konfigurasi elektron kalium dengan menulis [Ar] 4s¹, di mana [Ar] menunjukkan “inti argon. ” Demikian pula, kita dapat menulis konfigurasi elektron kalsium (Z = 20) sebagai [Ar] 4s². Penempatan elektron terluar dalam orbital 4s (bukan dalam orbital 3d) kalium sangat didukung oleh bukti eksperimental. Perbandingan berikut juga menunjukkan bahwa ini adalah konfigurasi yang benar. Kimia potasium sangat mirip dengan litium dan natrium, dua logam alkali pertama. Elektron terluar dari litium dan natrium berada dalam orbital s (tidak ada ambiguitas dalam menetapkan konfigurasi elektronnya); oleh karena itu, kita mengharapkan elektron terakhir kalium untuk menempati 4s daripada orbital 3d.


Tabel 7.3 Konfigurasi Unsur-Elektron Keadaan Dasar*
* Simbol [He] disebut inti helium dan mewakili 1s². [Ne] disebut inti neon dan mewakili 1s²2s²2p⁶. [Ar] disebut inti argon dan mewakili [Ne] 3s²3p⁶. [Kr] disebut inti kripton dan mewakili [Ar] 4s²3d¹⁰4p⁶. [Xe] disebut inti xenon dan mewakili [Kr] 5s²4d¹⁰5p⁶. [Rn] disebut inti radon dan mewakili [Xe] 6s²4f¹⁴5d¹⁰6p⁶.

Unsur-unsur dari skandium (Z = 21) ke tembaga (Z=29) adalah logam transisi. Logam transisi memiliki subkulit yang tidak lengkap atau mudah menghasilkan kation yang memiliki subkulit yang tidak lengkap. Pertimbangkan seri logam transisi pertama, dari skandium hingga tembaga. Dalam seri ini elektron tambahan ditempatkan dalam orbital 3d, sesuai dengan aturan Hund. Namun, ada dua penyimpangan. Konfigurasi elektron kromium (Z = 24) adalah [Ar] 4s¹3d⁵ dan bukan [Ar] 4s²3d⁴, seperti yang kita duga. Terobosan serupa dalam pola diamati untuk tembaga, yang konfigurasi elektronnya adalah [Ar] 4s¹3d¹⁰ daripada [Ar] 4s²3d⁹. Alasan ketidakberesan ini adalah karena stabilitas yang sedikit lebih besar dikaitkan dengan sub-setengah-setengah (3d⁵) dan benar-benar setengah-penuh (3d¹⁰). Elektron dalam subkulit yang sama (dalam hal ini, orbital d) memiliki energi yang sama tetapi distribusi spasial yang berbeda. Akibatnya, mereka melindungi satu sama lain relatif kecil, dan elektron lebih kuat tertarik oleh inti ketika mereka memiliki konfigurasi 3d⁵. Menurut aturan Hund, diagram orbital untuk Cr adalah

Dengan demikian, Cr memiliki total enam elektron tidak berpasangan. Diagram orbital untuk tembaga adalah
Sekali lagi, stabilitas ekstra diperoleh dalam kasus ini dengan memiliki sub kulit 3d sepenuhnya terselesaikan. Secara umum, sub kulit setengah-penuh dan benar-benar berlapis memiliki stabilitas ekstra.

Untuk unsur Zn (Z = 30) hingga Kr (Z = 36), subkulit 4s dan 4p semuanya mudah. Dengan rubidium (Z = 37), elektron mulai memasuki tingkat energi n = 5.


Konfigurasi elektron dalam seri logam transisi kedua [yttrium (Z = 39) menjadi perak (Z = 47)] juga tidak beraturan, tetapi kita tidak akan peduli dengan perinciannya di sini.


Periode keenam dari tabel periodik dimulai dengan sesium (Z = 55) dan barium (Z = 56), yang konfigurasi elektronnya adalah [Xe] 6s¹ dan [Xe] 6s², masing-masing. Selanjutnya kita sampai pada lantanum (Z = 57). Dari Gambar 7.24 kita berharap bahwa setelah memasang orbital 6s kita akan menempatkan elektron tambahan dalam orbital 4f. Pada kenyataannya, energi orbital 5d dan 4f sangat dekat; pada kenyataannya, untuk lantanum 4f sedikit lebih tinggi dalam energi daripada 5d. Dengan demikian, konfigurasi elektron lantanum adalah [Xe] 6s²5d¹ dan bukan [Xe] 6s²4f¹.


Lantanum berikutnya adalah 14 unsur yang dikenal sebagai lantanida, atau deret tanah jarang [serium (Z = 58) hingga lutetium (Z=71)]. Logam tanah jarang memiliki subkulit 4f tidak lengkap atau mudah menimbulkan kation yang memiliki subkulit 4f tidak lengkap. Dalam seri ini, elektron yang ditambahkan ditempatkan dalam orbital 4f. Setelah sub kulit 4f sepenuhnya diisi, elektron berikutnya memasuki sub kulit 5d lutetium. Perhatikan bahwa konfigurasi elektron gadolinium (Z = 64) adalah [Xe] 6s²4f⁷5d¹ daripada [Xe] 6s²4f⁸. Seperti halnya kromium, gadolinium memperoleh stabilitas ekstra dengan memiliki subkulit setengah-penuh (4f⁷).


Seri logam transisi ketiga, termasuk lantanum dan hafnium (Z=72) dan memanjang melalui emas (Z=79), ditandai dengan pemasangan subkulit 5d. Dengan Hg (Z=80), orbital 6s dan 5d kini telah diisi. Sub kulit 6p berikutnya, yang membawa kita ke radon (Z = 86).


Baris unsur terakhir adalah seri aktinida, yang dimulai di thorium (Z=90). Sebagian besar unsur-unsur ini tidak ditemukan di alam tetapi telah disintesis.


Dengan beberapa pengecualian, Anda harus bisa menulis konfigurasi elektron dari unsur apa pun, menggunakan Gambar 7.24 sebagai panduan. Unsur-unsur yang membutuhkan perlakuan khusus adalah logam transisi, lantanida, dan aktinida. Seperti yang telah kita catat sebelumnya, pada nilai yang lebih besar dari bilangan kuantum utama n, urutan subkulit dapat mengisi terbalik dari satu unsur ke unsur berikutnya. Gambar 7.28 mengelompokkan unsur sesuai dengan jenis subkulit tempat elektron terluar ditempatkan.



Gambar 7.28 Klasifikasi kelompok unsur dalam tabel periodik sesuai dengan jenis subkulit yang diisi dengan elektron.

Contoh 7.11

Tulis konfigurasi konfigurasi keadaan dasar untuk (a) sulfur (S) dan (b) paladium (Pd), yang diamagnetik.
(a)
Strategi
Berapa banyak elektron dalam atom S (Z=16)? Kita mulai dengan n = 1 dan melanjutkan ke beberapa orbital dengan urutan yang ditunjukkan pada Gambar 7.24. Untuk setiap nilai π“, kita menetapkan nilai yang mungkin dari mβ„“. Kita dapat menempatkan elektron dalam orbital sesuai dengan prinsip pengecualian Pauli dan aturan Hund dan kemudian menulis konfigurasi elektron. Tugas ini disederhanakan jika kita menggunakan inti gas mulia yang mendahului S untuk elektron bagian dalam.

Penyelesaian
Belerang memiliki 16 elektron. Inti gas mulia dalam hal ini adalah [Ne]. (Ne adalah gas mulia pada periode sebelum sulfur.) [Ne] mewakili 1s²2s²2p⁶. Ini memberitahu kita 6 elektron untuk mengisi subkulit 3s dan sebagian mengisi subkulit 3p. Dengan demikian, konfigurasi elektron S adalah 1s²2s²2p⁶3s²3p⁴ atau [Ne] 3s²3p⁴.

(b)
Strategi
Kita menggunakan pendekatan yang sama seperti pada (a). Apa artinya mengatakan bahwa Pd adalah unsur diamagnetik?

Penyelesaian
Paladium memiliki 46 elektron. Inti gas mulia dalam hal ini adalah [Kr]. (Kr adalah gas mulia pada periode paladium sebelumnya.) [Kr] mewakili

1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶

10 elektron sisanya didistribusikan di antara orbital 4d dan 5s. Tiga pilihan tersebut adalah (1) 4d¹⁰, (2) 4d⁹5s¹, dan (3) 4d⁸5s². Karena paladium diamagnetik, semua elektron berpasangan dan konfigurasi elektronnya seharusnya

1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶4d¹⁰

atau hanya [Kr] 4d¹⁰. Konfigurasi dalam (2) dan (3) keduanya mewakili unsur paramagnetik.

Periksa
Untuk mengkonfirmasi jawabannya, tulis diagram orbital untuk (1), (2), dan (3).

Latihan
Tulis konfigurasi elektron keadaan dasar untuk fosfor (P).

Ulasan Konsep
Identifikasi atom yang memiliki konfigurasi elektron keadaan dasar berikut: [Ar] 4s²3d⁶

7.8 Konfigurasi Elektron

Empat bilangan kuantum n, 𝓁, mβ‚—, dan ms memungkinkan kita memberi label elektron dalam setiap orbital pada atom apa pun. Dalam arti tertentu, kita dapat menganggap himpunan empat bilangan kuantum sebagai "alamat" elektron dalam atom, agak mirip dengan cara yang sama seperti alamat jalan, kota, negara, provinsi, dan kode pos menentukan alamat seseorang. Misalnya, empat bilangan kuantum untuk elektron orbital 2s adalah n = 2, π“ = 0, mβ‚— = 0, dan ms = -½  atau +½. Sangat tidak nyaman untuk menuliskan semua bilangan kuantum demikian, dan oleh karena itu kita menggunakan notasi yang disederhanakan (n, π“mβ‚—ms). Untuk contoh tersebut, bilangan kuantumnya adalah (2, 0, 0, ) atau (2, 0, 0, ). Nilai ms tidak berpengaruh pada energi, ukuran, bentuk, atau orientasi orbital, tetapi menentukan bagaimana elektron diatur dalam orbital.

Contoh 7.8 menunjukkan bagaimana bilangan kuantum elektron dalam orbital diatur.

Contoh 7.8

Tuliskan empat bilangan kuantum untuk elektron dalam orbital 3p.


Strategi


Apa yang "3" dan "p" tunjukkan dalam 3p? Berapa banyak orbital (nilai mβ‚—) yang ada dalam subkulit 3p? Berapa nilai yang mungkin untuk bilangan kuantum spin elektron?

Penyelesaian
Untuk memulainya, kita tahu bahwa bilangan kuantum utama n adalah 3 dan bilangan kuantum momentum sudut π“ harus 1 (karena kita berhadapan dengan orbital p).


Untuk π“ = 1, ada tiga nilai mβ‚— yaitu -1, 0, dan 1. Karena bilangan kuantum spin elektron ms dapat -½  atau +½, kita menyimpulkan bahwa ada enam cara yang mungkin untuk menunjuk elektron menggunakan ( notasi n, π“mβ‚—ms):
(3, 1, -1, +½)  (3, 1, -1, -½)
(3, 1, 0, +½)  (3, 1, 0, -½)
(3, 1, 1, +½)  (3, 1, 1, -½)

Periksa


Dalam enam penunjukan ini kita melihat bahwa nilai-nilai dan π“ adalah tetap, tetapi nilai-nilai mβ‚— dan ms dapat bervariasi.

Latihan
Tuliskan empat bilangan kuantum untuk elektron dalam orbital 4d.


Atom hidrogen adalah sistem yang sangat sederhana karena hanya mengandung satu elektron. Elektron dapat berada di orbital 1s (keadaan dasar), atau dapat ditemukan di beberapa orbital berenergi lebih tinggi (pada keadaan tereksitasi). Namun, untuk atom berelektron banyak, kita harus mengetahui konfigurasi elektron atomnya, yaitu, bagaimana elektron didistribusikan di antara berbagai orbital atom, untuk memahami sifat elektron. Kita akan menggunakan 10 unsur pertama (hidrogen sampai neon) untuk mengilustrasikan aturan untuk menulis konfigurasi elektron atom di keadaan dasar. (Bagian 7.9 akan menjelaskan bagaimana aturan-aturan ini dapat diterapkan pada sisa unsur berikutnya dalam tabel periodik.) Untuk diskusi kita kali ini, ingatlah bahwa jumlah elektron dalam atom sama dengan nomor atomnya (Z).


Gambar 7.22 menunjukkan bahwa elektron dalam atom hidrogen keadaan-dasar harus dalam orbital 1s, sehingga konfigurasi elektronnya adalah 1s¹:


Konfigurasi elektron juga dapat diwakili oleh diagram orbital yang menunjukkan spin elektron (lihat Gambar 7.16):
Panah ke atas menunjukkan salah satu dari dua kemungkinan gerakan spin elektron. (Atau, kita bisa mewakili elektron dengan panah ke bawah.) Kotak mewakili orbital atom.

Prinsip Pengecualian Pauli (Larangan Pauli)

Untuk atom berelektron banyak, kita menggunakan prinsip pengecualian Pauli untuk menentukan konfigurasi elektron. Prinsip ini menyatakan bahwa tidak ada dua elektron dalam atom yang dapat memiliki susunan empat bilangan kuantum yang sama. Jika dua elektron dalam atom memiliki nilai n, π“, dan mβ‚— yang sama (yaitu, dua elektron ini berada dalam orbital atom yang sama), maka keduanya harus memiliki nilai mβ‚› yang berbeda. Dengan kata lain, hanya dua elektron yang dapat menempati orbital atom yang sama, dan elektron-elektron ini harus memiliki spin berlawanan. Perhatikan atom helium, yang memiliki dua elektron. Tiga cara yang mungkin untuk menempatkan dua elektron dalam orbital 1s adalah sebagai berikut:
Diagram (a) dan (b) dikesampingkan oleh prinsip pengecualian Pauli. Dalam (a), kedua elektron memiliki putaran ke atas yang sama dan akan memiliki bilangan kuantum (1, 0, 0, +½); dalam (b), kedua elektron memiliki spin ke bawah dan akan memiliki bilangan kuantum (1, 0, 0, -½). Hanya konfigurasi di (c) yang secara fisik dapat diterima, karena satu elektron memiliki bilangan kuantum (1, 0, 0, +½) dan yang lainnya memiliki (1, 0, 0, -½). Dengan demikian, atom helium memiliki konfigurasi sebagai berikut:
Perhatikan bahwa 1s² dibaca "satu s dua," bukan "satu s kuadrat."

Diamagnetisme dan Paramagnetisme
Prinsip pengecualian Pauli adalah salah satu prinsip dasar mekanika kuantum. Prinsip itu bisa diuji dengan observasi sederhana. Jika dua elektron dalam orbital 1s dari atom helium memiliki spin yang sama, atau paralel, (↑↑ atau ↓↓), medan magnet bersihnya akan saling menguatkan [Gambar 7.25 (a)]. Pengaturan seperti itu akan membuat gas helium paramagnetik. Zat paramagnetik adalah zat yang mengandung spin tidak berpasangan bersih dan tertarik oleh magnet. Di sisi lain, jika elektron berputar berpasangan, atau antiparalel satu sama lain (↑↓ atau ↓↑), efek magnet akan saling membatalkan [Gambar 7.25 (b)]. Zat diamagnetik tidak mengandung spin tidak berpasangan bersih dan sedikit ditolak oleh magnet.
Gambar 7.25 Putaran (a) paralel dan (b) antiparalel dari dua elektron. Dalam (a) dua medan magnet saling menguatkan. Pada (b) dua medan magnet saling membatalkan.


Pengukuran sifat magnetik memberikan bukti paling langsung untuk konfigurasi elektron unsur tertentu. Kemajuan dalam desain instrumen selama 30 tahun terakhir atau lebih memungkinkan kita untuk menentukan jumlah elektron tidak berpasangan dalam atom (Gambar 7.26). Melalui percobaan kita menemukan bahwa atom helium dalam keadaan dasarnya tidak memiliki medan magnet bersih. Oleh karena itu, dua elektron dalam orbital 1s harus dipasangkan sesuai dengan prinsip pengecualian Pauli dan gas helium diamagnetik. Aturan yang berguna untuk diingat adalah bahwa setiap atom dengan jumlah elektron ganjil akan selalu mengandung satu atau lebih spin yang tidak berpasangan karena kita membutuhkan jumlah elektron genap untuk pasangan sempurna. Di sisi lain, atom yang mengandung jumlah elektron genap tidak mengandung spin tidak berpasangan. Kita akan segera melihat alasan perilaku ini.

Gambar 7.26 Awalnya substansi paramagnetik ditimbang pada keseimbangan. Ketika elektromagnet dihidupkan, keseimbangan diimbangi karena tabung sampel ditarik ke medan magnet. Dengan mengetahui konsentrasi dan massa tambahan yang dibutuhkan untuk membangun kembali keseimbangan, adalah mungkin untuk menghitung jumlah elektron tidak berpasangan dalam sampel.


Sebagai contoh lain, perhatikan atom litium (Z = 3) yang memiliki tiga elektron. Elektron ketiga tidak dapat masuk ke orbital 1s karena ia pasti akan memiliki seperangkat empat bilangan kuantum yang sama dengan salah satu dari dua elektron pertama. Oleh karena itu, elektron ini "memasuki" orbital yang lebih tinggi berikutnya (penuh energi), yaitu orbital 2s (lihat Gambar 7.23). Konfigurasi elektron litium adalah 1s²2s¹, dan diagram orbitalnya adalah

Atom litium mengandung satu elektron yang tidak berpasangan dan karena itu logam litium bersifat paramagnetik.

Efek Perisai Pada Atom Berelektron Banyak
Secara eksperimental kita menemukan bahwa orbital 2s terletak pada tingkat energi yang lebih rendah daripada orbital 2p dalam atom berelektron banyak. Mengapa? Dalam membandingkan konfigurasi elektron 1s²2s¹ dan 1s²2p¹, kita mencatat bahwa, dalam kedua kasus, orbital 1s diisi dengan dua elektron. Gambar 7.27 menunjukkan plot probabilitas radial untuk orbital 1s, 2s, dan 2p. Karena orbital 2s dan 2p lebih besar dari orbital 1s, sebuah elektron di orbital ini akan menghabiskan lebih banyak waktu jauh dari inti daripada elektron dalam orbital 1s. Dengan demikian, kita dapat mengatakan bahwa elektron 2s atau 2p yang "terperisai" sebagian dari gaya tarik inti oleh elektron 1s. Konsekuensi penting dari efek perisai adalah bahwa ia mengurangi tarikan elektrostatik antara proton dalam inti dan elektron dalam orbital 2s atau 2p.
Gambar 7.27 Plot probabilitas radial (lihat Gambar 7.18) untuk orbital 1s, 2s, dan 2p. Elektron 1s secara efektif melindungi elektron 2s dan 2p dari inti. Orbital 2s lebih tajam daripada orbital 2p.


Cara di mana kerapatan elektron bervariasi ketika kita bergerak dari inti ke luar tergantung pada jenis orbital. Meskipun elektron 2s menghabiskan sebagian besar waktunya (rata-rata) sedikit lebih jauh dari inti daripada elektron 2p, kerapatan elektron di dekat inti sebenarnya lebih besar untuk elektron 2s (lihat maksimum kecil untuk orbital 2s di Gambar 7.27). Untuk alasan ini, orbital 2s dikatakan lebih "menembus" daripada orbital 2p. Oleh karena itu, elektron 2s kurang terperisai oleh elektron 1s dan lebih kuat dipegang oleh inti. Pada kenyataannya, untuk bilangan kuantum utama n yang sama, daya tembus berkurang seiring dengan meningkatnya bilangan kuantum momentum sudut π“, atau

s > p > d > f > ...


Karena stabilitas suatu elektron ditentukan oleh kekuatan daya tariknya terhadap inti, maka elektron 2s akan lebih rendah energinya daripada elektron 2p. Dengan kata lain, lebih sedikit energi yang dibutuhkan untuk melepaskan elektron 2p daripada elektron 2s karena elektron 2p tidak dipegang dengan kuat oleh inti. Atom hidrogen hanya memiliki satu elektron dan, karenanya, tanpa efek perisai seperti itu.


Melanjutkan diskusi kita tentang atom dari 10 unsur pertama, kita lanjutkan dengan berilium (Z = 4). Konfigurasi elektron keadaan dasar dari berilium adalah 1s²2, atau

Berilium bersifat diamagnetik, seperti yang kita harapkan.

Konfigurasi elektron boron (Z = 5) adalah 1s²2s²2p¹
Perhatikan bahwa elektron yang tidak berpasangan dapat berada dalam orbital 2px, 2py, atau 2pz. Pilihannya sepenuhnya arbitrer karena ketiga orbital p memiliki energi yang setara. Seperti yang ditunjukkan diagram, boron bersifat paramagnetik.

Aturan Hund
Konfigurasi elektron karbon (Z = 6) adalah 1s²2s²2p². Berikut ini adalah cara berbeda untuk mendistribusikan dua elektron di antara tiga orbital p:
Tidak satu pun dari tiga pengaturan tersebut yang melanggar prinsip pengecualian Pauli, jadi kita harus menentukan yang mana yang akan memberikan stabilitas terbesar. Jawabannya diberikan oleh aturan Hund, yang menyatakan bahwa susunan elektron paling stabil dalam subkulit adalah yang memiliki jumlah spin paralel terbanyak. Pengaturan yang ditunjukkan pada (c) memuaskan kondisi ini. Dalam kedua (a) dan (b) kedua spin saling membatalkan satu sama lain. Dengan demikian, diagram orbital untuk karbon adalah
Secara kualitatif, kita dapat memahami mengapa (c) lebih disukai daripada (a). Dalam (a), kedua elektron berada dalam orbital 2px yang sama, dan kedekatannya menghasilkan tolakan timbal balik yang lebih besar daripada ketika mereka menempati dua orbital yang terpisah, katakanlah 2px dan 2py. Pilihan (c) atas (b) lebih halus tetapi dapat dibenarkan atas dasar teoretis. Fakta bahwa atom karbon mengandung dua elektron tidak berpasangan sesuai dengan aturan Hund.

Konfigurasi elektron nitrogen (Z = 7) adalah 1s²2s²2p³:
Sekali lagi, aturan Hund menentukan bahwa ketiga elektron 2p memiliki spin paralel satu sama lain; atom nitrogen mengandung tiga elektron tidak berpasangan.


Konfigurasi elektron oksigen (Z = 8) adalah 1s²2s²2p⁴. Atom oksigen memiliki dua elektron yang tidak berpasangan:

Konfigurasi elektron fluor (Z = 9) adalah 1s²2s²2p⁵. Sembilan elektron disusun sebagai berikut:
Atom fluorine memiliki satu elektron yang tidak berpasangan.


Neon (Z=10), subkulit 2p sudah terisi penuh. Konfigurasi elektron neon adalah 1s²2s²2p⁶, dan semua elektron berpasangan, sebagai berikut:

Gas neon harus bersifat diamagnetik, dan pengamatan eksperimental menunjukkan prediksi ini.

Aturan Umum untuk Mengatur Elektron Pada Orbital Atom
Berdasarkan contoh-contoh sebelumnya kita dapat merumuskan beberapa aturan umum untuk menentukan jumlah maksimum elektron yang dapat diatur ke berbagai subkulit dan orbital untuk nilai n:

  1. Setiap kulit atau tingkat bilangan kuantum utama n berisi n subkulit. Misalnya, jika n = 2, maka ada dua subkulit (dua nilai 𝓁) dari bilangan kuantum momentum sudut 0 dan 1.
  2. Setiap subkulit dari bilangan kuantum 𝓁 berisi (2𝓁 + 1) orbital. Misalnya, jika 𝓁 = 1, maka ada tiga orbital p.
  3. Tidak lebih dari dua elektron dapat ditempatkan di setiap orbital. Oleh karena itu, jumlah maksimum elektron hanyalah dua kali lipat jumlah orbital yang digunakan.
  4. Cara cepat untuk menentukan jumlah elektron maksimum yang dapat dimiliki suatu atom pada tingkat utama n adalah dengan menggunakan rumus 2n².
Contoh 7.9 dan 7.10 menggambarkan prosedur untuk menghitung jumlah elektron dalam orbital dan pelabelan elektron dengan empat bilangan kuantum.

Contoh 7.9

Berapakah jumlah maksimum elektron yang dapat berada di tingkat dasar dengan n = 3?

Strategi

Diketahui bilangan kuantum utama (n) sehingga kita dapat menentukan semua nilai yang mungkin dari bilangan kuantum momentum sudut (𝓁). Aturan sebelumnya menunjukkan bahwa jumlah orbital untuk setiap nilai 𝓁 adalah (2𝓁 + 1). Dengan demikian, kita dapat menentukan jumlah total orbital. Berapa banyak elektron yang dapat ditampung oleh masing-masing orbital?

Penyelesaian
Jika n = 3, 𝓁 = 0, 1, dan 2. Jumlah orbital untuk setiap nilai 𝓁 adalah
Nilai 𝓁
Jumlah Orbital (2𝓁 + 1)
0
1
1
3
2
5

Jumlah total orbital adalah sembilan. Karena setiap orbital dapat menampung dua elektron, jumlah maksimum elektron yang dapat tinggal di orbital adalah 2 x 9, atau 18.

Periksa
Jika kita menggunakan rumus (n²) dalam Contoh 7.7, kita menemukan bahwa jumlah total orbital adalah 3² dan jumlah total elektron adalah 2(3)² atau 18. Secara umum, jumlah elektron dalam suatu tingkat energi utama n adalah 2n².

Latihan
Hitung jumlah total elektron yang dapat berada di tingkat dasar n = 4.

Contoh 7.10
Atom oksigen memiliki total delapan elektron. Tuliskan empat bilangan kuantum untuk masing-masing dari delapan elektron di keadaan dasar.

Strategi
Kita mulai dengan n = 1 dan melanjutkan ke beberapa orbital dengan urutan yang ditunjukkan pada Gambar 7.24. Untuk setiap nilai n, kita menentukan nilai yang mungkin dari 𝓁. Untuk setiap nilai 𝓁, kita menetapkan nilai yang mungkin dari mβ‚—. Kita dapat menempatkan elektron dalam orbital sesuai dengan prinsip pengecualian Pauli dan aturan Hund.

Penyelesaian
Kita mulai dengan n = 1, jadi 𝓁 = 0, sebuah subkulit yang sesuai dengan orbital 1s. Orbital ini dapat menampung total dua elektron. Berikutnya, n = 2, dan 𝓁 dapat bernilai 0 atau 1. Sub kulit 𝓁 = 0 berisi satu orbital 2s, yang dapat menampung dua elektron. Keempat elektron yang tersisa ditempatkan di subkulit 𝓁 = 1, yang berisi tiga orbital 2p. Diagram orbitalnya adalah
Hasilnya dirangkum dalam tabel berikut:
Tentu saja, penempatan elektron kedelapan dalam orbital berlabel mβ‚— = 1 sepenuhnya arbitrer. Akan sama benarnya untuk menetapkannya ke mβ‚— = 0 atau mβ‚— = -1.

Latihan
Tulis satu susunan lengkap bilangan kuantum untuk masing-masing elektron dalam boron (B).


Pada titik ini mari kita rangkum apa yang telah kita ungkapkan dari sepuluh unsur pertama yang telah diungkapkan tentang konfigurasi elektron keadaan dasar dan sifat-sifat elektron dalam atom:
  1. Tidak ada dua elektron dalam atom yang sama dapat memiliki empat bilangan kuantum yang sama. Ini adalah prinsip pengecualian Pauli.
  2. Setiap orbital dapat ditempati oleh maksimal dua elektron. Mereka harus memiliki putaran yang berlawanan, atau bilangan kuantum spin elektron yang berbeda.
  3. Susunan elektron yang paling stabil dalam subkulit adalah yang memiliki jumlah spin paralel terbanyak. Ini adalah aturan Hund.
  4. Atom-atom di mana satu atau lebih elektron tidak berpasangan adalah paramagnetik. Atom-atom di mana semua spin elektron berpasangan adalah diamagnetik.
  5. Dalam atom hidrogen, energi elektron hanya bergantung pada bilangan kuantum utamanya n. Dalam atom berelektron banyak, energi elektron bergantung pada n dan bilangan kuantum momentum sudutnya 𝓁.
  6. Dalam atom berelektron banyak, subkulitnya diatur dalam urutan yang ditunjukkan pada Gambar 7.21.
  7. Untuk elektron dengan bilangan kuantum utama yang sama, daya tembusnya, atau kedekatannya dengan inti, berkurang dalam urutan s > p > d > f. Ini berarti bahwa, misalnya, lebih banyak energi diperlukan untuk melepaskan elektron 3s dari atom berelektron banyak daripada yang diperlukan untuk melepaskan elektron 3p.

7.7 Orbital Atom

Tabel 7.2 menunjukkan hubungan antara bilangan kuantum dan orbital atom. Kita melihat bahwa ketika 𝓁 = 0, (2𝓁 + 1) = 1 dan hanya ada satu nilai mβ„“, maka kita memiliki orbital s. Ketika 𝓁 = 1, (2𝓁 + 1) = 3, maka ada tiga nilai orbital mβ„“ atau tiga p, berlabel px, py, dan pz. Ketika 𝓁 = 2, (2𝓁 + 1) = 5 dan ada lima nilai mβ„“, dan lima orbital yang sesuai diberi label dengan subskrip yang lebih rumit. Pada bagian berikut ini kita akan memperhatikan orbital s, p, dan d secara terpisah.

Tabel 7.2 Hubungan Antara Bilangan Kuantum dan Orbital Atom

Orbital s. Salah satu pertanyaan penting yang perlu kita tanyakan ketika mempelajari sifat-sifat orbital atom adalah, Apa saja bentuk orbital? Sebenarnya, orbital tidak memiliki bentuk yang terdefinisi dengan baik karena fungsi gelombang yang mencirikan orbital memanjang dari inti hingga tak terbatas. Dalam hal ini, sulit untuk mengatakan seperti apa bentuk orbital itu. Di sisi lain, tentu saja nyaman untuk berpikir bahwa orbital memiliki bentuk tertentu, khususnya dalam membahas pembentukan ikatan kimia antara atom, seperti yang akan kita lakukan pada Bab 9 dan Bab 10.

Meskipun pada prinsipnya sebuah elektron dapat ditemukan di mana saja, kita tahu bahwa sebagian besar waktu elektron cukup dekat dengan inti. Gambar 7.18 (a) menunjukkan distribusi kerapatan elektron dalam orbital hidrogen 1s yang bergerak keluar dari inti. Seperti yang Anda lihat, kerapatan elektron turun dengan cepat ketika jarak dari inti meningkat. Secara kasar, ada sekitar 90 persen kemungkinan menemukan elektron dalam radius 100 pm (1 pm = 1 x 10⁻¹² m) yang mengelilingi inti. Dengan demikian, kita dapat mewakili orbital 1s dengan menggambar diagram batas permukaan yang membungkus sekitar 90 persen dari total kerapatan elektron dalam orbital, seperti yang ditunjukkan pada Gambar 7.18 (b). Orbital 1s yang ditampilkan dengan cara ini hanyalah bola.

Gambar 7.18 (a) Plot kerapatan elektron dalam orbital hidrogen 1s sebagai fungsi jarak dari inti. Kerapatan elektron jatuh dengan cepat ketika jarak dari inti meningkat. (b) diagram batas permukaan orbital hidrogen 1s. (c) Cara yang lebih realistis untuk melihat distribusi kerapatan elektron adalah dengan membagi orbital 1s menjadi cangkang tipis bulat yang berurutan. Plot kemungkinan menemukan elektron di setiap kulit, yang disebut probabilitas radial, sebagai fungsi jarak menunjukkan maksimum pada 52,9 pm dari inti. Menariknya, ini sama dengan jari-jari orbit terdalam pada model Bohr.

Gambar 7.19 menunjukkan diagram batas permukaan untuk orbital atom hidrogen 1s, 2s, dan 3s. Semua orbital s berbentuk bola tetapi memiliki ukuran berbeda, yang meningkat seiring dengan meningkatnya jumlah kuantum utama. Meskipun detail variasi kerapatan elektron dalam setiap permukaan batas hilang, tidak ada kerugian serius. Bagi kita fitur paling penting dari orbital atom adalah bentuk dan ukuran relatifnya, yang secara memadai diwakili oleh diagram permukaan batas.

Gambar 7.19 Diagram batas permukaan orbital hidrogen 1s, 2s, dan 3s. Setiap bola mengandung sekitar 90 persen dari total kerapatan elektron. Semua orbital s berbentuk bola. Secara kasar, ukuran orbital sebanding dengan n², di mana n adalah bilangan kuantum utama.

Orbital p. Harus jelas bahwa orbital p mulai dengan bilangan kuantum utama n = 2. Jika n = 1, maka bilangan kuantum momentum sudut 𝓁 hanya dapat mengasumsikan nilai nol; oleh karena itu, hanya ada orbital 1s. Seperti yang kita lihat sebelumnya, ketika 𝓁 = 1, bilangan kuantum magnetik mβ„“ dapat memiliki nilai -1, 0, 1. Dimulai dengan n = 2 dan π“ = 1, maka kita memiliki tiga orbital 2p: 2px, 2py, dan 2pz (Gambar 7.20). Subskrip huruf menunjukkan sumbu sepanjang orientasi orbital. Ketiga orbital p ini identik dalam ukuran, bentuk, dan energi; mereka berbeda satu sama lain hanya dalam orientasi. Perhatikan, bagaimanapun, bahwa tidak ada hubungan sederhana antara nilai-nilai mβ„“ dan arah x, y, dan z. Untuk tujuan kita, Anda hanya perlu mengingat bahwa karena ada tiga kemungkinan nilai mβ„“, ada tiga orbital p dengan orientasi yang berbeda.


Diagram batas permukaan orbital p pada Gambar 7.20 menunjukkan bahwa setiap orbital p dapat dianggap sebagai dua lobus pada sisi berlawanan dari inti. Seperti orbital s, orbital p bertambah dalam ukuran dari orbital 2p menjadi 3p hingga 4p dan seterusnya.

Gambar 7.20 Diagram batas permukaan dari tiga orbital 2p. Orbital-orbital ini memiliki bentuk dan energi yang identik, tetapi orientasinya berbeda. Orbital p dari bilangan kuantum utama yang lebih tinggi memiliki bentuk yang serupa.

Orbital d dan Orbital Berenergi Tinggi Lainnya. Ketika 𝓁 = 2, ada lima nilai mβ„“, yang sesuai dengan lima orbital. Nilai terendah dari n untuk sebuah orbital d adalah 3. Karena 𝓁 tidak pernah bisa lebih besar dari n - 1, ketika n = 3 dan 𝓁 = 2, kita memiliki lima orbital d (3dxy, 3dyz, 3dxz, 3dx²-, dan 3d), ditunjukkan pada Gambar 7.21. Seperti dalam kasus orbital p, orientasi orbital d yang berbeda sesuai dengan nilai mβ„“ yang berbeda, tetapi sekali lagi tidak ada korespondensi langsung antara orientasi yang diberikan dan nilai mβ„“ tertentu. Semua orbital 3d dalam atom identik dalam energi. Orbital d yang n lebih besar dari 3 (4d, 5d, ...) memiliki bentuk yang serupa.

Gambar 7.21 Diagram batas permukaan dari orbital 3d. Meskipun orbital 3dz² terlihat berbeda, ini setara dengan empat orbital lainnya dalam semua hal lainnya. Orbital d bilangan kuantum utama yang lebih tinggi memiliki bentuk yang serupa.

Orbital yang memiliki energi lebih tinggi dari orbital d diberi label f, g,. . . dan seterusnya. Orbital-orbital itu penting dalam memperhitungkan perilaku unsur-unsur dengan nomor atom lebih besar dari 57, tetapi bentuknya sulit untuk diwakili. Dalam kimia dasar, kita mengabaikan orbital yang memiliki nilai 𝓁 lebih besar dari 3 (orbital g dan seterusnya).


Contoh 7.6 dan 7.7 mengilustrasikan pelabelan orbital dengan bilangan kuantum dan perhitungan jumlah total orbital yang terkait dengan bilangan kuantum utama yang diberikan.


Contoh 7.6
Sebutkan nilai-nilai n, 𝓁, dan mβ„“ untuk orbital dalam subkulit 4d.

Strategi
Apa hubungan antara n, 𝓁, dan mβ„“? Apa yang dilambangkan oleh "4" dan "d" dalam 4d?

Penyelesaian
Seperti yang kita lihat sebelumnya, angka yang diberikan dalam penunjukan subkulit adalah bilangan kuantum utama, jadi dalam kasus ini n = 4. Huruf itu menunjuk jenis orbital. Karena kita berhadapan dengan orbital d, 𝓁 = 2. Nilai mβ„“ dapat bervariasi dari -𝓁 sampai π“. Oleh karena itu, mβ„“ bisa -2, -1, 0, 1, atau 2.

Periksa
Nilai n dan π“ ditetapkan untuk 4d, tetapi mβ„“ dapat memiliki salah satu dari lima nilai, yang sesuai dengan lima orbital d.

Latihan
Berikan nilai-nilai bilangan kuantum yang terkait dengan orbital dalam subkulit 3p.

Contoh 7.7
Berapa jumlah total orbital yang terkait dengan bilangan kuantum utama n = 3?

Strategi
Untuk menghitung jumlah total orbital untuk nilai n yang diberikan, pertama-tama kita perlu menuliskan nilai yang mungkin dari π“. Kita kemudian menentukan berapa banyak nilai mβ„“ yang dikaitkan dengan masing-masing nilai π“. Jumlah total orbital sama dengan jumlah semua nilai mβ„“.

Penyelesaian
Untuk n = 3, nilai yang mungkin dari π“ adalah 0, 1, dan 2. Dengan demikian, ada satu orbital 3s (n = 3, π“ = 0, dan mβ„“ = 0); ada tiga orbital 3p (n = 3, π“ = 1, dan mβ„“ = -1, 0, 1); ada beberapa orbital 3d (n = 3, π“ = 2, dan mβ„“ = -2, -1, 0, 1, 2). Jumlah total orbital adalah 1 + 3 = 5 = 9.

Periksa
Jumlah total orbital untuk nilai n adalah . Jadi di sini kita memiliki 3² = 9. Bisakah Anda membuktikan validitas hubungan ini?

Latihan
Berapa jumlah total orbital yang terkait dengan bilangan kuantum utama n = 4?

Energi dari Orbital
Sekarang kita memiliki pemahaman tentang bentuk dan ukuran orbital atom, kita siap untuk menyelidiki energi relatifnya dan melihat bagaimana tingkat energi mempengaruhi pengaturan aktual elektron dalam atom.

Menurut Persamaan (7.5), energi elektron dalam atom hidrogen ditentukan semata-mata oleh bilangan kuantum utamanya. Dengan demikian, energi orbital hidrogen meningkat sebagai berikut (Gambar 7.22):



1s < 2s = 2p <3s = 3p = 3d < 4s =4p = 4d = 4f < ...


Gambar 7.22 Tingkat energi orbital dalam atom hidrogen. Setiap garis horizontal pendek mewakili satu orbital. Orbit dengan nomor kuantum utama yang sama (n) semuanya memiliki energi yang sama.

Meskipun distribusi kerapatan elektron berbeda dalam orbital 2s dan 2p, elektron hidrogen memiliki energi yang sama apakah itu dalam orbital 2s atau orbital 2p. Orbital 1s dalam atom hidrogen sesuai dengan kondisi paling stabil, keadaan dasar. Sebuah elektron yang berada di orbital ini paling kuat dipegang oleh inti karena paling dekat dengan inti. Sebuah elektron dalam orbital 2s, 2p, atau lebih tinggi dalam atom hidrogen berada dalam kondisi tereksitasi.

Gambaran energi lebih kompleks untuk atom berelektron banyak daripada hidrogen. Energi elektron dalam atom semacam itu tergantung pada jumlah kuantum momentum sudutnya dan juga pada jumlah kuantum utamanya (Gambar 7.23). Untuk atom berelektron banyak, tingkat energi 3d sangat dekat dengan tingkat energi 4s. Akan tetapi, energi total atom tidak hanya bergantung pada jumlah energi orbital tetapi juga pada energi tolakan antara elektron-elektron dalam orbital-orbital ini (masing-masing orbital dapat menampung hingga dua elektron, seperti yang akan kita lihat pada Bagian 7.8) . Ternyata energi total atom lebih rendah ketika subkulit 4s dipasang sebelum subkulit 3d. Gambar 7.24 menggambarkan urutan orbital atom yang ditempatkan dalam atom berelektron banyak. Kita akan mempertimbangkan contoh spesifik dalam Bagian 7.8.



Gambar 7.23 Tingkat energi orbital dalam atom berelektron banyak. Perhatikan bahwa tingkat energi tergantung pada nilai n dan 𝓁.


Gambar 7.24 Urutan di mana subkulit atom diisi dalam atom berelektron banyak. Mulailah dengan orbital 1s dan bergerak ke bawah, mengikuti arah panah. Jadi, urutannya sebagai berikut: 1s < 2s < 2p < 3s < 3p < 4s < 3d < . . . .